Our knowledge of the fundamental particles of nature and their interactions is summarized by the standard model of particle physics. Advancing our understanding in this field has required experiments that operate at ever higher energies and intensities, which produce extremely large and information-rich data samples. The use of machine-learning techniques is revolutionizing how we interpret these data samples, greatly increasing the discovery potential of present and future experiments. Here we summarize the challenges and opportunities that come with the use of machine learning at the frontiers of particle physics.

Radovic A., Williams M., Rousseau D., Kagan M., Bonacorsi D., Himmel A., et al. (2018). Machine learning at the energy and intensity frontiers of particle physics. NATURE, 560(7716), 41-48 [10.1038/s41586-018-0361-2].

Machine learning at the energy and intensity frontiers of particle physics

Bonacorsi D.;
2018

Abstract

Our knowledge of the fundamental particles of nature and their interactions is summarized by the standard model of particle physics. Advancing our understanding in this field has required experiments that operate at ever higher energies and intensities, which produce extremely large and information-rich data samples. The use of machine-learning techniques is revolutionizing how we interpret these data samples, greatly increasing the discovery potential of present and future experiments. Here we summarize the challenges and opportunities that come with the use of machine learning at the frontiers of particle physics.
2018
Radovic A., Williams M., Rousseau D., Kagan M., Bonacorsi D., Himmel A., et al. (2018). Machine learning at the energy and intensity frontiers of particle physics. NATURE, 560(7716), 41-48 [10.1038/s41586-018-0361-2].
Radovic A.; Williams M.; Rousseau D.; Kagan M.; Bonacorsi D.; Himmel A.; Aurisano A.; Terao K.; Wongjirad T.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/804241
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 300
  • ???jsp.display-item.citation.isi??? 260
social impact