Number processing induces spatial attention shifts to the left or right side for small or large numbers, respectively. This spatial-numerical association (SNA) extends to mental calculation, such that subtractions and additions induce left or right biases, respectively. However, the time course of activating SNAs during mental calculation is unclear. Here, we addressed this issue by measuring visual position discrimination during auditory calculation. Thirty-four healthy adults listened in each trial to five successive elements of arithmetic facts (first operand, operator, second operand, equal and result) and verbally classified their correctness. After each element (except for the result), a fixation dot moved equally often to either the left or right side and participants pressed left or right buttons to discriminate its movement direction (four times per trial). First and second operand magnitude (small/large), operation (addition/subtraction), result correctness (right/wrong) and movement direction (left/right) were balanced across 128 trials. Manual reaction times of dot movement discriminations were considered in relation to previous arithmetic elements. We found no evidence of early attentional shifts after first operand and operator presentation. Discrimination performance was modulated consistent with SNAs after the second operand, suggesting that attentional shifts occur once there is access to all elements necessary to complete an arithmetic operation. Such late-occurring attention shifts may reflect a combination of multiple element-specific biases and confirm their functional role in mental calculation.

Assessing orienting of attention to understand the time course of mental calculation

D'Ascenzo S.;Lugli L.;Nicoletti R.;
2020

Abstract

Number processing induces spatial attention shifts to the left or right side for small or large numbers, respectively. This spatial-numerical association (SNA) extends to mental calculation, such that subtractions and additions induce left or right biases, respectively. However, the time course of activating SNAs during mental calculation is unclear. Here, we addressed this issue by measuring visual position discrimination during auditory calculation. Thirty-four healthy adults listened in each trial to five successive elements of arithmetic facts (first operand, operator, second operand, equal and result) and verbally classified their correctness. After each element (except for the result), a fixation dot moved equally often to either the left or right side and participants pressed left or right buttons to discriminate its movement direction (four times per trial). First and second operand magnitude (small/large), operation (addition/subtraction), result correctness (right/wrong) and movement direction (left/right) were balanced across 128 trials. Manual reaction times of dot movement discriminations were considered in relation to previous arithmetic elements. We found no evidence of early attentional shifts after first operand and operator presentation. Discrimination performance was modulated consistent with SNAs after the second operand, suggesting that attentional shifts occur once there is access to all elements necessary to complete an arithmetic operation. Such late-occurring attention shifts may reflect a combination of multiple element-specific biases and confirm their functional role in mental calculation.
COGNITIVE PROCESSING
D'Ascenzo S.; Lugli L.; Nicoletti R.; Fischer M.H.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/803323
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact