Although 4-dicyanomethylene-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran (DCM) has been known for many decades as a bright and photostable fluorophore, used for a wide variety of applications in chemistry, biology and physics, only little attention has been paid so far to the presence of multiple isomers and conformers, namely s-trans-(E), s-cis-(E), s-trans-(Z), and s-cis-(Z). In particular, light-induced E–Z isomerization plays a great role on the overall photophysical properties of DCM. Herein, we give a full description of a photoswitchable DCM derivative by a combination of structural, theoretical and spectroscopic methods. The main s-trans-(E) isomer is responsible for most of the fluorescence features, whereas the s-cis-(E) conformer only contributes marginally. The non-emitting Z isomers are generated in large conversion yields upon illumination with visible light (e.g., 485 or 514 nm) and converted back to the E forms by UV irradiation (e.g., 365 nm). Such photoswitching is efficient and reversible, with high fatigue resistance. The E→Z and Z→E photoisomerization quantum yields were determined in different solvents and at different irradiation wavelengths. Interestingly, the fluorescence and photoisomerization properties are strongly influenced by the solvent polarity: the fluorescence is predominant at higher polarity, whereas photoisomerization becomes more efficient at lower polarity. Intermediate medium (THF) represents an optimized situation with a good balance between these two features.
Casimiro L., Maisonneuve S., Retailleau P., Silvi S., Xie J., Metivier R. (2020). Photophysical Properties of 4-Dicyanomethylene-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran Revisited: Fluorescence versus Photoisomerization. CHEMISTRY-A EUROPEAN JOURNAL, 26(63), 14341-14350 [10.1002/chem.202002828].
Photophysical Properties of 4-Dicyanomethylene-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran Revisited: Fluorescence versus Photoisomerization
Casimiro L.;Silvi S.;
2020
Abstract
Although 4-dicyanomethylene-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran (DCM) has been known for many decades as a bright and photostable fluorophore, used for a wide variety of applications in chemistry, biology and physics, only little attention has been paid so far to the presence of multiple isomers and conformers, namely s-trans-(E), s-cis-(E), s-trans-(Z), and s-cis-(Z). In particular, light-induced E–Z isomerization plays a great role on the overall photophysical properties of DCM. Herein, we give a full description of a photoswitchable DCM derivative by a combination of structural, theoretical and spectroscopic methods. The main s-trans-(E) isomer is responsible for most of the fluorescence features, whereas the s-cis-(E) conformer only contributes marginally. The non-emitting Z isomers are generated in large conversion yields upon illumination with visible light (e.g., 485 or 514 nm) and converted back to the E forms by UV irradiation (e.g., 365 nm). Such photoswitching is efficient and reversible, with high fatigue resistance. The E→Z and Z→E photoisomerization quantum yields were determined in different solvents and at different irradiation wavelengths. Interestingly, the fluorescence and photoisomerization properties are strongly influenced by the solvent polarity: the fluorescence is predominant at higher polarity, whereas photoisomerization becomes more efficient at lower polarity. Intermediate medium (THF) represents an optimized situation with a good balance between these two features.File | Dimensione | Formato | |
---|---|---|---|
Disclaimer_UNIBO_postprint_IRIS-Silvi-ChemEurJ2020.pdf
Open Access dal 12/07/2021
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
632.92 kB
Formato
Adobe PDF
|
632.92 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.