This paper deals with existence and multiplicity of positive solutions for a quasilinear problem with Neumann boundary conditions. The problem is set in a ball and admits at least one constant non-zero solution; moreover, it involves a nonlinearity that can be supercritical in the sense of Sobolev embeddings. The main tools used are variational techniques and the shooting method for ODE's. These results are contained in [6, 3].

Francesca Colasuonno, Benedetta Noris (2017). Radial positive solutions for p-Laplacian supercritical Neumann problems. BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 8(1), 55-72 [10.6092/issn.2240-2829/7797].

Radial positive solutions for p-Laplacian supercritical Neumann problems

Francesca Colasuonno;
2017

Abstract

This paper deals with existence and multiplicity of positive solutions for a quasilinear problem with Neumann boundary conditions. The problem is set in a ball and admits at least one constant non-zero solution; moreover, it involves a nonlinearity that can be supercritical in the sense of Sobolev embeddings. The main tools used are variational techniques and the shooting method for ODE's. These results are contained in [6, 3].
2017
Francesca Colasuonno, Benedetta Noris (2017). Radial positive solutions for p-Laplacian supercritical Neumann problems. BRUNO PINI MATHEMATICAL ANALYSIS SEMINAR, 8(1), 55-72 [10.6092/issn.2240-2829/7797].
Francesca Colasuonno; Benedetta Noris
File in questo prodotto:
File Dimensione Formato  
ONLINE-Bruno_Pini-BenFra.pdf

accesso aperto

Tipo: Versione (PDF) editoriale / Version Of Record
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 657.02 kB
Formato Adobe PDF
657.02 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/802915
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 2
social impact