The use of contextualised word embeddings allowed for a relevant performance increase for almost all Natural Language Processing (NLP) applications. Recently some new models especially developed for Italian became available to scholars. This work aims at evaluating the impact of these models in enhancing application performance for Italian establishing the new state-of-the-art for some fundamental NLP tasks.

How “BERTology” changed the state-of-the-art also for Italian NLP

Tamburini Fabio
2020

Abstract

The use of contextualised word embeddings allowed for a relevant performance increase for almost all Natural Language Processing (NLP) applications. Recently some new models especially developed for Italian became available to scholars. This work aims at evaluating the impact of these models in enhancing application performance for Italian establishing the new state-of-the-art for some fundamental NLP tasks.
Proceedings of the Seventh Italian Conference on Computational Linguistics
415
421
Tamburini Fabio
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/802266
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact