The use of contextualised word embeddings allowed for a relevant performance increase for almost all Natural Language Processing (NLP) applications. Recently some new models especially developed for Italian became available to scholars. This work aims at applying simple fine-tuning methods for producing high-performance solutions at the EVALITA KIPOS PoS-tagging task (Bosco et al., 2020).
Tamburini Fabio (2020). UniBO@KIPoS: Fine-tuning the Italian “BERTology” for PoS-tagging Spoken Data. Aachen : CEUR-WS.
UniBO@KIPoS: Fine-tuning the Italian “BERTology” for PoS-tagging Spoken Data
Tamburini Fabio
Primo
2020
Abstract
The use of contextualised word embeddings allowed for a relevant performance increase for almost all Natural Language Processing (NLP) applications. Recently some new models especially developed for Italian became available to scholars. This work aims at applying simple fine-tuning methods for producing high-performance solutions at the EVALITA KIPOS PoS-tagging task (Bosco et al., 2020).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
Tamburini_KIPoS.pdf
accesso aperto
Descrizione: Contributo in Atti di Convegno
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
203.83 kB
Formato
Adobe PDF
|
203.83 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.