The use of contextualised word embeddings allowed for a relevant performance increase for almost all Natural Language Processing (NLP) applications. Recently some new models especially developed for Italian became available to scholars. This work aims at applying simple fine-tuning methods for producing high-performance solutions at the EVALITA KIPOS PoS-tagging task (Bosco et al., 2020).

Tamburini Fabio (2020). UniBO@KIPoS: Fine-tuning the Italian “BERTology” for PoS-tagging Spoken Data. Aachen : CEUR-WS.

UniBO@KIPoS: Fine-tuning the Italian “BERTology” for PoS-tagging Spoken Data

Tamburini Fabio
Primo
2020

Abstract

The use of contextualised word embeddings allowed for a relevant performance increase for almost all Natural Language Processing (NLP) applications. Recently some new models especially developed for Italian became available to scholars. This work aims at applying simple fine-tuning methods for producing high-performance solutions at the EVALITA KIPOS PoS-tagging task (Bosco et al., 2020).
2020
Proceedings of the Seventh Evaluation Campaign of Natural Language Processing and Speech Tools for Italian. Final Workshop (EVALITA 2020)
497
500
Tamburini Fabio (2020). UniBO@KIPoS: Fine-tuning the Italian “BERTology” for PoS-tagging Spoken Data. Aachen : CEUR-WS.
Tamburini Fabio
File in questo prodotto:
File Dimensione Formato  
Tamburini_KIPoS.pdf

accesso aperto

Descrizione: Contributo in Atti di Convegno
Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 203.83 kB
Formato Adobe PDF
203.83 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/802196
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact