Two counterexamples, addressing questions raised in cite{AD} and cite{PZ}, are provided. Both counterexamples are related to chaoses. Let $F_n=Y_n+Z_n$, where the random variables $Y_n$ and $Z_n$ belong to different chaoses of uniformly bounded degree. It may be that $F_noverset{a.s.}longrightarrow 0$, $F_noverset{L_{2+delta}}longrightarrow 0$ and $Eigl{sup_n,abs{F_n}^deltaigr}0$, and yet $Y_n$ fails to converge to 0 a.s.

Pratelli, L., Rigo, P. (2021). On the almost sure convergence of sums. STATISTICS & PROBABILITY LETTERS, 172, 1-5 [10.1016/j.spl.2021.109045].

On the almost sure convergence of sums

Rigo Pietro
2021

Abstract

Two counterexamples, addressing questions raised in cite{AD} and cite{PZ}, are provided. Both counterexamples are related to chaoses. Let $F_n=Y_n+Z_n$, where the random variables $Y_n$ and $Z_n$ belong to different chaoses of uniformly bounded degree. It may be that $F_noverset{a.s.}longrightarrow 0$, $F_noverset{L_{2+delta}}longrightarrow 0$ and $Eigl{sup_n,abs{F_n}^deltaigr}0$, and yet $Y_n$ fails to converge to 0 a.s.
2021
Pratelli, L., Rigo, P. (2021). On the almost sure convergence of sums. STATISTICS & PROBABILITY LETTERS, 172, 1-5 [10.1016/j.spl.2021.109045].
Pratelli, Luca; Rigo, Pietro
File in questo prodotto:
File Dimensione Formato  
11585_801963.pdf

Open Access dal 20/01/2023

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.11 MB
Formato Adobe PDF
1.11 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/801963
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact