In this paper, we describe two systems for predicting message-level offensive language in German tweets: one discriminates between offensive and not offensive messages, and the second performs a fine-grained classification by recognizing also classes of offense. Both systems are based on the same approach, which builds upon Recurrent Neural Networks used with the following features: word embeddings, emoji embeddings and social-network specific features. The model is able to combine word-level information and tweet-level information in order to perform the classification tasks.

Michele Corazza, S.M. (2018). Inriafbk at germeval 2018: Identifying offensive tweets using recurrent neural networks.

Inriafbk at germeval 2018: Identifying offensive tweets using recurrent neural networks

Michele Corazza;
2018

Abstract

In this paper, we describe two systems for predicting message-level offensive language in German tweets: one discriminates between offensive and not offensive messages, and the second performs a fine-grained classification by recognizing also classes of offense. Both systems are based on the same approach, which builds upon Recurrent Neural Networks used with the following features: word embeddings, emoji embeddings and social-network specific features. The model is able to combine word-level information and tweet-level information in order to perform the classification tasks.
2018
Proceedings of GermEval 2018
80
84
Michele Corazza, S.M. (2018). Inriafbk at germeval 2018: Identifying offensive tweets using recurrent neural networks.
Michele Corazza, Stefano Menini, Pinar Arslan, Rachele Sprugnoli, Elena Cabrio, Sara Tonelli, Serena Villata
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/801645
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact