Numerical simulations are a powerful tool to investigate turbulent flows, both for theoretical studies and practical applications. The reliability of a simulation is mainly dependent on the turbulence model adopted, and improving its accuracy is a crucial issue. In this study, we investigated the potential for an alternative formulation of the Navier-Stokes equations, based on the stochastic representation of the velocity field. The new approach, named pseudo-stochastic simulation (PSS), is a generalisation of the widespread classical eddy-viscosity model, where the contribution of the unresolved scales of motion is expressed by a variance tensor, modelled following different paradigms. The PSS models were compared with the classical ones mathematically and numerically in the turbulent channel flow at Reτ = 590. The PSS and the classical models are equivalent when the variance tensor is shaped through a molecular dissipation analogy, while it is more accurate when the tensor is defined by the way of a local variance model. A near-wall damping function derived from recent advancement in the field is also proposed and was successfully validated. The analyses demonstrate the relevance of the approach proposed and provide a basis for the development of an alternative turbulence model.

Cintolesi C., Memin E. (2020). Stochastic modelling of turbulent flows for numerical simulations. FLUIDS, 5(3), 1-19 [10.3390/fluids5030108].

Stochastic modelling of turbulent flows for numerical simulations

Cintolesi C.
Primo
;
2020

Abstract

Numerical simulations are a powerful tool to investigate turbulent flows, both for theoretical studies and practical applications. The reliability of a simulation is mainly dependent on the turbulence model adopted, and improving its accuracy is a crucial issue. In this study, we investigated the potential for an alternative formulation of the Navier-Stokes equations, based on the stochastic representation of the velocity field. The new approach, named pseudo-stochastic simulation (PSS), is a generalisation of the widespread classical eddy-viscosity model, where the contribution of the unresolved scales of motion is expressed by a variance tensor, modelled following different paradigms. The PSS models were compared with the classical ones mathematically and numerically in the turbulent channel flow at Reτ = 590. The PSS and the classical models are equivalent when the variance tensor is shaped through a molecular dissipation analogy, while it is more accurate when the tensor is defined by the way of a local variance model. A near-wall damping function derived from recent advancement in the field is also proposed and was successfully validated. The analyses demonstrate the relevance of the approach proposed and provide a basis for the development of an alternative turbulence model.
2020
Cintolesi C., Memin E. (2020). Stochastic modelling of turbulent flows for numerical simulations. FLUIDS, 5(3), 1-19 [10.3390/fluids5030108].
Cintolesi C.; Memin E.
File in questo prodotto:
File Dimensione Formato  
fluids-05-00108-v2.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 886.21 kB
Formato Adobe PDF
886.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/801530
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact