Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CRIS Current Research Information System
BACKGROUND: While there is a long history of measuring death and disability from injuries, modern research methods must account for the wide spectrum of disability that can occur in an injury, and must provide estimates with sufficient demographic, geographical and temporal detail to be useful for policy makers. The Global Burden of Disease (GBD) 2017 study used methods to provide highly detailed estimates of global injury burden that meet these criteria. METHODS: In this study, we report and discuss the methods used in GBD 2017 for injury morbidity and mortality burden estimation. In summary, these methods included estimating cause-specific mortality for every cause of injury, and then estimating incidence for every cause of injury. Non-fatal disability for each cause is then calculated based on the probabilities of suffering from different types of bodily injury experienced. RESULTS: GBD 2017 produced morbidity and mortality estimates for 38 causes of injury. Estimates were produced in terms of incidence, prevalence, years lived with disability, cause-specific mortality, years of life lost and disability-adjusted life-years for a 28-year period for 22 age groups, 195 countries and both sexes. CONCLUSIONS: GBD 2017 demonstrated a complex and sophisticated series of analytical steps using the largest known database of morbidity and mortality data on injuries. GBD 2017 results should be used to help inform injury prevention policy making and resource allocation. We also identify important avenues for improving injury burden estimation in the future.
James, S. (2020). Estimating global injuries morbidity and mortality: methods and data used in the Global Burden of Disease 2017 study. INJURY PREVENTION, 26(supplement 1), 125-153 [10.1136/injuryprev-2019-043531].
Estimating global injuries morbidity and mortality: methods and data used in the Global Burden of Disease 2017 study
James S. L.;Castle C. D.;Dingels Z. V.;Fox J. T.;Hamilton E. B.;Liu Z.;Roberts N. L. S.;Sylte D. O.;Bertolacci G. J.;Cunningham M.;Henry N. J.;Legrand K. E.;Abdelalim A.;Abdollahpour I.;Abdulkader R. S.;Abedi A.;Abegaz K. H.;Abosetugn A. E.;Abushouk A. I.;Adebayo O. M.;Adsuar J. C.;Advani S. M.;Agudelo-Botero M.;Ahmad T.;Ahmed M. B.;Ahmed R.;Aichour M. T. E.;Alahdab F.;Alanezi F. M.;Alema N. M.;Alemu B. W.;Alghnam S. A.;Ali B. A.;Ali S.;Alinia C.;Alipour V.;Aljunid S. M.;Almasi-Hashiani A.;Almasri N. A.;Altirkawi K.;Amer Y. S. A.;Andrei C. L.;Ansari-Moghaddam A.;Antonio C. A. T.;Anvari D.;Appiah S. C. Y.;Arabloo J.;Arab-Zozani M.;Arefi Z.;Aremu O.;Ariani F.;Arora A.;Asaad M.;Quintanilla B. P. A.;Ayano G.;Ayanore M. A.;Azarian G.;Badawi A.;Badiye A. D.;Baig A. A.;Bairwa M.;Bakhtiari A.;Balachandran A.;Banach M.;Banerjee S. K.;Banik P. C.;Banstola A.;Barker-Collo S. L.;Bärnighausen T. W.;Barzegar A.;Bayati M.;Bazargan-Hejazi S.;Bedi N.;Behzadifar M.;Belete H.;Bennett D. A.;Bensenor I. M.;Berhe K.;Bhagavathula A. S.;Bhardwaj P.;Bhat A. G.;Bhattacharyya K.;Bhutta Z. A.;Bibi S.;Bijani A.;Boloor A.;Borges G.;Borschmann R.;Borzì A. M.;Boufous S.;Braithwaite D.;Briko N. I.;Brugha T.;Budhathoki S. S.;Car J.;Cárdenas R.;Carvalho F.;Castaldelli-Maia J. M.;Castañeda-Orjuela C. A.;Castelpietra G.;Catalá-López F.;Cerin E.;Chandan J. S.;Chapman J. R.;Chattu V. K.;Chattu S. K.;Chatziralli I.;Chaudhary N.;Cho D. Y.;Choi;J. -Y. J.;Chowdhury M. A. K.;Christopher D. J.;Chu;D. -T.;Cicuttini F. M.;Coelho J. M.;Costa V. M.;Dahlawi S. M. A.;Daryani A.;Dávila-Cervantes C. A.;De Leo;D. Demeke;F. M. Demoz;G. T. Demsie;D. G. Deribe;K. Desai;R. Nasab;M. D.;Da Silva;D. D. Forooshani;Z. S. D. Do;H. T. Doyle;K. E. Driscoll;T. R. Dubljanin;E. Adema;B. D. Eagan;A. W. Elemineh;D. A. El-Jaafary;S. I. El-Khatib;Z. Ellingsen;C. L.;El Sayedzaki;M. Eskandarieh;S. Eyawo;O. Faris;P. S. Faro;A. Farzadfar;F. Fereshtehnejad;S. -M.;Fernandes E.;Ferrara P.;Fischer F.;Folayan M. O.;Fomenkov A. A.;Foroutan M.;Francis J. M.;Franklin R. C.;Fukumoto T.;Geberemariyam B. S.;Gebremariam H.;Gebremedhin K. B.;Gebremeskel L. G.;Gebremeskel G. G.;Gebremichael B.;Gedefaw G. A.;Geta B.;Getenet A. B.;Ghafourifard M.;Ghamari F.;Gheshlagh R. G.;Gholamian A.;Gilani S. A.;Gill T. K.;Goudarzian A. H.;Goulart A. C.;Grada A.;Grivna M.;Guimarães R. A.;Guo Y.;Gupta G.;Haagsma J. A.;Hall B. J.;Hamadeh R. R.;Hamidi S.;Handiso D. W.;Haro J. M.;Hasanzadeh A.;Hassan S.;Hassanipour S.;Hassankhani H.;Hassen H. Y.;Havmoeller R.;Hendrie D.;Heydarpour F.;Híjar M.;Ho H. C.;Hoang C. L.;Hole M. K.;Holla R.;Hossain N.;Hosseinzadeh M.;Hostiuc S.;Hu G.;Ibitoye S. E.;Ilesanmi O. S.;Inbaraj L. R.;Irvani S. S. N.;Islam M. M.;Islam S. M. S.;Ivers R. Q.;Jahani M. A.;Jakovljevic M.;Jalilian F.;Jayaraman S.;Jayatilleke A. U.;Jha R. P.;John-Akinola Y. O.;Jonas J. B.;Jones K. M.;Joseph N.;Joukar F.;Jozwiak J. J.;Jungari S. B.;Jürisson M.;Kabir A.;Kahsay A.;Kalankesh L. R.;Kalhor R.;Kamil T. A.;Kanchan T.;Kapoor N.;Karami M.;Kasaeian A.;Kassaye H. G.;Kavetskyy T.;Kayode G. A.;Keiyoro P. N.;Kelbore A. G.;Khader Y. S.;Khafaie M. A.;Khalid N.;Khalil I. A.;Khalilov R.;Khan M.;Khan E. A.;Khan J.;Khanna T.;Khazaei S.;Khazaie H.;Khundkar R.;Kiirithio D. N.;Kim;Y. -E.;Kim Y. J.;Kim D.;Kisa S.;Kisa A.;Komaki H.;Kondlahalli S. K. M.;Koolivand A.;Korshunov V. A.;Koyanagi A.;Kraemer M. U. G.;Krishan K.;Defo B. K.;Bicer B. K.;Kugbey N.;Kumar N.;Kumar M.;Kumar V.;Kumar N.;Kumaresh G.;Lami F. H.;Lansingh V. C.;Lasrado S.;Latifi A.;Lauriola P.;Vecchia C. L.;Leasher J. L.;Lee S. W. H.;Li S.;Liu X.;Lopez A. D.;Lotufo P. A.;Lyons R. A.;Machado D. B.;Madadin M.;Abd El Razek;M. M. Mahotra;N. B. Majdan;M. Majeed;A. Maled;V. Malta;D. C. Manafi;N. Manafi;A. Manda;A. -L.;Manjunatha N.;Mansour-Ghanaei F.;Mansournia M. A.;Maravilla J. C.;Mason-Jones A. J.;Masoumi S. Z.;Massenburg B. B.;Maulik P. K.;Mehndiratta M. M.;Melketsedik Z. A.;Memiah P. T. N.;Mendoza W.;Menezes R. G.;Mengesha M. M.;Meretoja T. J.;Meretoja A.;Merie H. E.;Mestrovic T.;Miazgowski B.;Miazgowski T.;Miller T. R.;Mini G. K.;Mirica A.;Mirrakhimov E. M.;Mirzaei-Alavijeh M.;Mithra P.;Moazen B.;Moghadaszadeh M.;Mohamadi E.;Mohammad Y.;Darwesh A. M.;Mohammadian-Hafshejani A.;Mohammadpourhodki R.;Mohammed S.;Mohammed J. A.;Mohebi F.;Bandpei M. A. M.;Molokhia M.;Monasta L.;Moodley Y.;Moradi M.;Moradi G.;Moradi-Lakeh M.;Moradzadeh R.;Morawska L.;Velásquez I. M.;Morrison S. D.;Mossie T. B.;Muluneh A. G.;Musa K. I.;Mustafa G.;Naderi M.;Nagarajan A. J.;Naik G.;Naimzada M. D.;Najaf F.;Nangia V.;Nascimento B. R.;Naserbakht M.;Nayak V.;Nazari J.;Ndwandwe D. E.;Negoi I.;Ngunjiri J. W.;Nguyen T. H.;Nguyen C. T.;Nguyen D. N.;Nguyen H. L. T.;Nikbakhsh R.;Ningrum D. N. A.;Nnaji C. A.;Ofori-Asenso R.;Ogbo F. A.;Oghenetega O. B.;Oh;I. -H.;Olagunju A. T.;Olagunju T. O.;Bali A. O.;Onwujekwe O. E.;Orpana H. M.;Ota E.;Otstavnov N.;Otstavnov S. S.;Mahesh A. P.;Padubidri J. R.;Pakhale S.;Pakshir K.;Panda-Jonas S.;Park;E. -K.;Patel S. K.;Pathak A.;Pati S.;Paulos K.;Peden A. E.;Pepito V. C. F.;Pereira J.;Phillips M. R.;Polibin R. V.;Polinder S.;Pourmalek F.;Pourshams A.;Poustchi H.;Prakash S.;Pribadi D. R. A.;Puri P.;Syed Z. Q.;Rabiee N.;Rabiee M.;Radfar A.;Rafay A.;Rafee A.;Rafei A.;Rahim F.;Rahimi S.;Rahman M. A.;Rajabpour-Sanati A.;Rajati F.;Rakovac I.;Rao S. J.;Rashedi V.;Rastogi P.;Rathi P.;Rawaf S.;Rawal L.;Rawassizadeh R.;Renjith V.;Resnikoff S.;Rezapour A.;Ribeiro A. I.;Rickard J.;González C. M. R.;Roever L.;Ronfani L.;Roshandel G.;Saddik B.;Safarpour H.;Safdarian M.;Sajadi S. M.;Salamati P.;Salem M. R. R.;Salem H.;Salz I.;Samy A. M.;Sanabria J.;Riera L. S.;Milicevic M. M. S.;Sarker A. R.;Sarveazad A.;Sathian B.;Sawhney M.;Sayyah M.;Schwebel D. C.;Seedat S.;Senthilkumaran S.;Seyedmousavi S.;Sha F.;Shaahmadi F.;Shahabi S.;Shaikh M. A.;Shams-Beyranvand M.;Sheikh A.;Shigematsu M.;Shin J. I.;Shiri R.;Siabani S.;Sigfusdottir I. D.;Singh J. A.;Singh P. K.;Sinha D. N.;Soheili A.;Soriano J. B.;Sorrie M. B.;Soyiri I. N.;Stokes M. A.;Sufiyan M. B.;Sykes B. L.;Tabarés-Seisdedos R.;Tabb K. M.;Taddele B. W.;Tefera Y. M.;Tehrani-Banihashemi A.;Tekulu G. H.;Tesema A. K. T.;Tesfay B. E.;Thapar R.;Titova M. V.;Tlaye K. G.;Tohidinik H. R.;Topor-Madry R.;Tran K. B.;Tran B. X.;Tripathy J. P.;Tsai A. C.;Tsatsakis A.;Car L. T.;Ullah I.;Ullah S.;Unnikrishnan B.;Upadhyay E.;Uthman O. A.;Valdez P. R.;Vasankari T. J.;Veisani Y.;Venketasubramanian N.;Violante F. S.;Vlassov V.;Waheed Y.;Wang;Y. -P.;Wiangkham T.;Wolde H. F.;Woldeyes D. H.;Wondmeneh T. G.;Wondmieneh A. B.;Wu;A. -M.;Wyper G. M. A.;Yadav R.;Yadollahpour A.;Yano Y.;Yaya S.;Yazdi-Feyzabadi V.;Ye P.;Yip P.;Yisma E.;Yonemoto N.;Yoon;S. -J.;Youm Y.;Younis M. Z.;Yousef Z.;Yu C.;Yu Y.;Moghadam T. Z.;Zaidi Z.;Zaman S. B.;Zamani M.;Zandian H.;Zarei F.;Zhang;Z. -J.;Zhang Y.;Ziapour A.;Zodpey S.;Dandona R.;Dharmaratne S. D.;Hay S. I.;Mokdad A. H.;Pigott D. M.;Reiner R. C.;Vos T.
2020
Abstract
BACKGROUND: While there is a long history of measuring death and disability from injuries, modern research methods must account for the wide spectrum of disability that can occur in an injury, and must provide estimates with sufficient demographic, geographical and temporal detail to be useful for policy makers. The Global Burden of Disease (GBD) 2017 study used methods to provide highly detailed estimates of global injury burden that meet these criteria. METHODS: In this study, we report and discuss the methods used in GBD 2017 for injury morbidity and mortality burden estimation. In summary, these methods included estimating cause-specific mortality for every cause of injury, and then estimating incidence for every cause of injury. Non-fatal disability for each cause is then calculated based on the probabilities of suffering from different types of bodily injury experienced. RESULTS: GBD 2017 produced morbidity and mortality estimates for 38 causes of injury. Estimates were produced in terms of incidence, prevalence, years lived with disability, cause-specific mortality, years of life lost and disability-adjusted life-years for a 28-year period for 22 age groups, 195 countries and both sexes. CONCLUSIONS: GBD 2017 demonstrated a complex and sophisticated series of analytical steps using the largest known database of morbidity and mortality data on injuries. GBD 2017 results should be used to help inform injury prevention policy making and resource allocation. We also identify important avenues for improving injury burden estimation in the future.
James, S. (2020). Estimating global injuries morbidity and mortality: methods and data used in the Global Burden of Disease 2017 study. INJURY PREVENTION, 26(supplement 1), 125-153 [10.1136/injuryprev-2019-043531].
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/800086
Citazioni
ND
51
53
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.