A conjecture of P.Lax (in pde and matrix theory) says that every hyperbolic polynomial in two space variables is the determinant of a symmetric hyperbolic matrix. The conjecture has recently been proven by Lewis-Parillo-Ramana. In this paper we prove related results in several space variables for polynomials which have rotational symmetry.

O.Liess (2009). Remarks on the Lax conjecture for hyperbolic polynomials. LINEAR ALGEBRA AND ITS APPLICATIONS, 430, 2123-2132 [10.1016/j.laa.2008.11.017].

Remarks on the Lax conjecture for hyperbolic polynomials

LIESS, OTTO EDWIN
2009

Abstract

A conjecture of P.Lax (in pde and matrix theory) says that every hyperbolic polynomial in two space variables is the determinant of a symmetric hyperbolic matrix. The conjecture has recently been proven by Lewis-Parillo-Ramana. In this paper we prove related results in several space variables for polynomials which have rotational symmetry.
2009
O.Liess (2009). Remarks on the Lax conjecture for hyperbolic polynomials. LINEAR ALGEBRA AND ITS APPLICATIONS, 430, 2123-2132 [10.1016/j.laa.2008.11.017].
O.Liess
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/80008
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact