The evolution of seismic design regulations together with the degradation of the monumental heritage made necessary to increase the structural safety of a large variety of masonry buildings. A recent strengthening technique consists in the application of a fiber grid/unidirectional sheet with lime or cementitious mortar (FRCM), thanks to several advantages of this retrofitting system in comparison to traditional epoxy-based materials (FRPs), such as better compatibility with the masonry substrate, resistance to high temperatures and reversibility. In this paper, the results of in-plane tests performed on panels strengthened with different types of FRCM systems (that differ in layout, matrix, grid materials and spacing) are presented, after a complete mechanical characterization of FRCM materials, carried out through direct tensile tests and single-lap shear tests. In diagonal compression tests (DCT), failure modes and global behavior of the panels were also analyzed using Digital Image Correlation (DIC) technique, for a better understanding of their in-plane behaviour.
A. Incerti, A.T. (2020). In-plane behaviour of FRCM-strengthened masonry panels. London : CRC Press Balkema - 2020 Taylor & Francis Group [10.1201/9781003098508-42].
In-plane behaviour of FRCM-strengthened masonry panels
A. Incerti
;A. R. Tilocca;A. Bellini;M. Savoia
2020
Abstract
The evolution of seismic design regulations together with the degradation of the monumental heritage made necessary to increase the structural safety of a large variety of masonry buildings. A recent strengthening technique consists in the application of a fiber grid/unidirectional sheet with lime or cementitious mortar (FRCM), thanks to several advantages of this retrofitting system in comparison to traditional epoxy-based materials (FRPs), such as better compatibility with the masonry substrate, resistance to high temperatures and reversibility. In this paper, the results of in-plane tests performed on panels strengthened with different types of FRCM systems (that differ in layout, matrix, grid materials and spacing) are presented, after a complete mechanical characterization of FRCM materials, carried out through direct tensile tests and single-lap shear tests. In diagonal compression tests (DCT), failure modes and global behavior of the panels were also analyzed using Digital Image Correlation (DIC) technique, for a better understanding of their in-plane behaviour.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.