A Si(100) surface featuring molecular recognition properties was obtained by covalent functionalization with a tetraphosphonate cavitand (Tiiii), able to complex positively charged species. Tiiii cavitand was grafted onto the Si by photochemical hydrosilylation together with 1-octene as a spatial spectator. The recognition properties of the Si-Tiiii surface were demonstrated through two independent analytical techniques, namely XPS and fluorescence spectroscopy, during the course of reversible complexationguest exchange-decomplexation cycles with specifically designed ammonium and pyridinium salts. Control experiments employing a Si(100) surface functionalized with a structurally similar, but complexation inactive, tetrathiophosphonate cavitand (TSiiii) demonstrated no recognition events. This provides evidence for the complexation properties of the Si-Tiiii surface, ruling out the possibility of nonspecific interactions between the substrate and the guests. The residual Si-O- terminations on the surface replace the guests’ original counterions, thus stabilizing the complex ion pairs. These results represent a further step toward the control of self-assembly of complex supramolecular architectures on surfaces.
E. Biavardi, M. Favazza, A. Motta, I. L. Fragalà, C. Massera, L. Prodi, et al. (2009). Molecular Recognition on a Cavitand-Functionalized Silicon Surface. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 131, 7447-7455 [10.1021/ja901678b].
Molecular Recognition on a Cavitand-Functionalized Silicon Surface
PRODI, LUCA;MONTALTI, MARCO;
2009
Abstract
A Si(100) surface featuring molecular recognition properties was obtained by covalent functionalization with a tetraphosphonate cavitand (Tiiii), able to complex positively charged species. Tiiii cavitand was grafted onto the Si by photochemical hydrosilylation together with 1-octene as a spatial spectator. The recognition properties of the Si-Tiiii surface were demonstrated through two independent analytical techniques, namely XPS and fluorescence spectroscopy, during the course of reversible complexationguest exchange-decomplexation cycles with specifically designed ammonium and pyridinium salts. Control experiments employing a Si(100) surface functionalized with a structurally similar, but complexation inactive, tetrathiophosphonate cavitand (TSiiii) demonstrated no recognition events. This provides evidence for the complexation properties of the Si-Tiiii surface, ruling out the possibility of nonspecific interactions between the substrate and the guests. The residual Si-O- terminations on the surface replace the guests’ original counterions, thus stabilizing the complex ion pairs. These results represent a further step toward the control of self-assembly of complex supramolecular architectures on surfaces.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.