The mitochondrial permeability transition pore (mPTP), a high-conductance channel triggered by a sudden Ca(2+)concentration increase, is composed of the F1FO-ATPase. Since mPTP opening leads to mitochondrial dysfunction, which is a feature of many diseases, a great pharmacological challenge is to find mPTP modulators. In our study, the effects of two 1,5-disubstituted 1,2,3-triazole derivatives, five-membered heterocycles with three nitrogen atoms in the ring and capable of forming secondary interactions with proteins, were investigated. Compounds3aand3bwere selected among a wide range of structurally related compounds because of their chemical properties and effectiveness in preliminary studies. In swine heart mitochondria, both compounds inhibit Ca2+-activated F1FO-ATPase without affecting F-ATPase activity sustained by the natural cofactor Mg2+. The inhibition is mutually exclusive, probably because of their shared enzyme site, and uncompetitive with respect to the ATP substrate, since they only bind to the enzyme-ATP complex. Both compounds show the same inhibition constant (KMODIFIER LETTER PRIMEi), but compound3ahas a doubled inactivation rate constant compared with compound3b. Moreover, both compounds desensitize mPTP opening without altering mitochondrial respiration. The results strengthen the link between Ca2+-activated F1FO-ATPase and mPTP and suggest that these inhibitors can be pharmacologically exploited to counteract mPTP-related diseases.
Algieri, V., Algieri, C., Maiuolo, L., De Nino, A., Pagliarani, A., Tallarida, M.A., et al. (2021). 1,5-Disubstituted-1,2,3-triazoles as inhibitors of the mitochondrial Ca2+ -activated F1 FO -ATP(hydrol)ase and the permeability transition pore. ANNALS OF THE NEW YORK ACADEMY OF SCIENCES, 1485(1), 43-55 [10.1111/nyas.14474].
1,5-Disubstituted-1,2,3-triazoles as inhibitors of the mitochondrial Ca2+ -activated F1 FO -ATP(hydrol)ase and the permeability transition pore
Algieri, CristinaCo-primo
;Pagliarani, Alessandra;Trombetti, Fabiana;Nesci, Salvatore
Ultimo
Supervision
2021
Abstract
The mitochondrial permeability transition pore (mPTP), a high-conductance channel triggered by a sudden Ca(2+)concentration increase, is composed of the F1FO-ATPase. Since mPTP opening leads to mitochondrial dysfunction, which is a feature of many diseases, a great pharmacological challenge is to find mPTP modulators. In our study, the effects of two 1,5-disubstituted 1,2,3-triazole derivatives, five-membered heterocycles with three nitrogen atoms in the ring and capable of forming secondary interactions with proteins, were investigated. Compounds3aand3bwere selected among a wide range of structurally related compounds because of their chemical properties and effectiveness in preliminary studies. In swine heart mitochondria, both compounds inhibit Ca2+-activated F1FO-ATPase without affecting F-ATPase activity sustained by the natural cofactor Mg2+. The inhibition is mutually exclusive, probably because of their shared enzyme site, and uncompetitive with respect to the ATP substrate, since they only bind to the enzyme-ATP complex. Both compounds show the same inhibition constant (KMODIFIER LETTER PRIMEi), but compound3ahas a doubled inactivation rate constant compared with compound3b. Moreover, both compounds desensitize mPTP opening without altering mitochondrial respiration. The results strengthen the link between Ca2+-activated F1FO-ATPase and mPTP and suggest that these inhibitors can be pharmacologically exploited to counteract mPTP-related diseases.File | Dimensione | Formato | |
---|---|---|---|
NYAS_NESCI.pdf
Open Access dal 25/09/2021
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
769.43 kB
Formato
Adobe PDF
|
769.43 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.