One of the key coordination problems in physically-deployed distributed systems, such as mobile robots, wireless sensor networks, and IoT systems in general, is to provide notions of “distributed sensing” achieved by the strict, continuous cooperation and interaction among individual devices. An archetypal operation of distributed sensing is data summarisation over a region of space, by which several higher-level problems can be addressed: counting items, measuring space, averaging environmental values, and so on. A typical coordination strategy to perform data summarisation in a peer-to-peer scenario, where devices can communicate only with a neighbourhood, is to progressively accumulate information towards one or more collector devices, though this typically exhibits problems of reactivity and fragility, especially in scenarios featuring high mobility. In this paper, we propose coordination strategies for data summarisation involving both idempotent and arithmetic aggregation operators, with the idea of controlling the minimum information propagation speed, so as to improve the reactivity to input changes. Given suitable assumptions on the network model, and under the restriction of no data loss, these algorithms achieve optimal reactivity. By empirical evaluation via simulation, accounting for various sources of volatility, and comparing to other existing implementations of data summarisation algorithms, we show that our algorithms are able to retain adequate accuracy even in high-variability scenarios where all other algorithms are significantly diverging from correct estimations.

Audrito G., Bergamini S., Damiani F., Viroli M. (2020). Resilient distributed collection through information speed thresholds. Heidebeld : Springer [10.1007/978-3-030-50029-0_14].

Resilient distributed collection through information speed thresholds

Viroli M.
2020

Abstract

One of the key coordination problems in physically-deployed distributed systems, such as mobile robots, wireless sensor networks, and IoT systems in general, is to provide notions of “distributed sensing” achieved by the strict, continuous cooperation and interaction among individual devices. An archetypal operation of distributed sensing is data summarisation over a region of space, by which several higher-level problems can be addressed: counting items, measuring space, averaging environmental values, and so on. A typical coordination strategy to perform data summarisation in a peer-to-peer scenario, where devices can communicate only with a neighbourhood, is to progressively accumulate information towards one or more collector devices, though this typically exhibits problems of reactivity and fragility, especially in scenarios featuring high mobility. In this paper, we propose coordination strategies for data summarisation involving both idempotent and arithmetic aggregation operators, with the idea of controlling the minimum information propagation speed, so as to improve the reactivity to input changes. Given suitable assumptions on the network model, and under the restriction of no data loss, these algorithms achieve optimal reactivity. By empirical evaluation via simulation, accounting for various sources of volatility, and comparing to other existing implementations of data summarisation algorithms, we show that our algorithms are able to retain adequate accuracy even in high-variability scenarios where all other algorithms are significantly diverging from correct estimations.
2020
Coordination Models and Languages - 22nd IFIP WG 6.1 International Conference, COORDINATION 2020
211
229
Audrito G., Bergamini S., Damiani F., Viroli M. (2020). Resilient distributed collection through information speed thresholds. Heidebeld : Springer [10.1007/978-3-030-50029-0_14].
Audrito G.; Bergamini S.; Damiani F.; Viroli M.
File in questo prodotto:
File Dimensione Formato  
main.pdf

accesso aperto

Tipo: Postprint / Author's Accepted Manuscript (AAM) - versione accettata per la pubblicazione dopo la peer-review
Licenza: Licenza per accesso libero gratuito
Dimensione 628.07 kB
Formato Adobe PDF
628.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/797339
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact