Hydrogen sulfide (H2S) is now considered not only for its toxicity, but also as an endogenously produced gas transmitter with multiple physiological roles, also in maintaining and regulating stem cell physiology. In the present work, we evaluated the effect of a common H2S donor, NaHS, on porcine vascular wall–mesenchymal stem cells (pVW–MSCs). pVW–MSCs were treated for 24 h with increasing doses of NaHS, and the cell viability, cell cycle, and reactive oxygen species (ROS) production were evaluated. Moreover, the long-term effects of NaHS administration on the noteworthy characteristics of pVW–MSCs were analyzed. The MTT test revealed no alteration in cell viability, however, the cell cycle analysis demonstrated that the highest NaHS dose tested (300 μM) determined a block in S phase, which did not depend on the ROS production. Moreover, NaHS (10 μM), continuously administered in culture for 21 days, was able to significantly reduce NG2, Nestin and PDGFR-β expression. The pro-angiogenic attitude of pVW–MSCs was partially reduced by NaHS: the cells maintained the ability to grow in spheroid and sprouting from that, but endothelial markers (Factor VIII and CD31) were reduced. In conclusion, NaHS can be toxic for pVW–MSCs in high doses, while in low doses, it influences cellular physiology, by affecting the gene expression with a slowing down of the endothelial lineage.

Effects of hydrogen sulfide donor nahs on porcine vascular wall-mesenchymal stem cells

Bernardini C.;La Mantia D.;Nesci S.;Salaroli R.;Algieri C.;Pagliarani A.;Zannoni A.
;
Forni M.
2020

Abstract

Hydrogen sulfide (H2S) is now considered not only for its toxicity, but also as an endogenously produced gas transmitter with multiple physiological roles, also in maintaining and regulating stem cell physiology. In the present work, we evaluated the effect of a common H2S donor, NaHS, on porcine vascular wall–mesenchymal stem cells (pVW–MSCs). pVW–MSCs were treated for 24 h with increasing doses of NaHS, and the cell viability, cell cycle, and reactive oxygen species (ROS) production were evaluated. Moreover, the long-term effects of NaHS administration on the noteworthy characteristics of pVW–MSCs were analyzed. The MTT test revealed no alteration in cell viability, however, the cell cycle analysis demonstrated that the highest NaHS dose tested (300 μM) determined a block in S phase, which did not depend on the ROS production. Moreover, NaHS (10 μM), continuously administered in culture for 21 days, was able to significantly reduce NG2, Nestin and PDGFR-β expression. The pro-angiogenic attitude of pVW–MSCs was partially reduced by NaHS: the cells maintained the ability to grow in spheroid and sprouting from that, but endothelial markers (Factor VIII and CD31) were reduced. In conclusion, NaHS can be toxic for pVW–MSCs in high doses, while in low doses, it influences cellular physiology, by affecting the gene expression with a slowing down of the endothelial lineage.
Bernardini C.; La Mantia D.; Nesci S.; Salaroli R.; Algieri C.; Pagliarani A.; Zannoni A.; Forni M.
File in questo prodotto:
File Dimensione Formato  
Bernardini et al Int J Mol Sci.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 5.19 MB
Formato Adobe PDF
5.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/797104
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact