The smart home concept can significantly benefit from predictive models that take proactive management operations on home actuators, based on users’ behavior evaluation. In this paper, we use a small-scale physical model, the ScaledHome-2 testbed, to experiment with the evolution of measurements in a suburban home under different environmental scenarios. We start from the observation that, for a home to become smart, in addition to IoT sensors and actuators, we also need a predictive model of how actions taken by inhabitants and home actuators affect the internal environment of the home, reflected in the sensor readings. In this paper, we propose a technique to create such a predictive model through machine learning in various simulated weather scenarios. This paper also contributes to the literature in the field by quantitatively comparing several machine learning algorithms (K-nearest neighbor, regression trees, Support Vector Machine regression, and Long Short Term Memory deep neural networks) in their ability to create accurate and generalizable predictive models for smart homes.
Mendula, M., Bellavista, P. (2020). Interaction and Behaviour Evaluation for Smart Homes: Data Collection and Analytics in the ScaledHome Project.
Interaction and Behaviour Evaluation for Smart Homes: Data Collection and Analytics in the ScaledHome Project
Mendula Matteo;Bellavista Paolo
2020
Abstract
The smart home concept can significantly benefit from predictive models that take proactive management operations on home actuators, based on users’ behavior evaluation. In this paper, we use a small-scale physical model, the ScaledHome-2 testbed, to experiment with the evolution of measurements in a suburban home under different environmental scenarios. We start from the observation that, for a home to become smart, in addition to IoT sensors and actuators, we also need a predictive model of how actions taken by inhabitants and home actuators affect the internal environment of the home, reflected in the sensor readings. In this paper, we propose a technique to create such a predictive model through machine learning in various simulated weather scenarios. This paper also contributes to the literature in the field by quantitatively comparing several machine learning algorithms (K-nearest neighbor, regression trees, Support Vector Machine regression, and Long Short Term Memory deep neural networks) in their ability to create accurate and generalizable predictive models for smart homes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


