Purpose: To assess the feasibility of automated stereotactic volumetric modulated arc therapy (SBRT-VMAT) planning using a simultaneous integrated boost (SIB) approach as a dose escalation strategy for SBRT in pancreatic cancer. Methods: Twelve patients with pancreatic cancer were retrospectively replanned. Dose prescription was 30 Gy to the planning target volume (PTV) and was escalated up to 50 Gy to the boost target volume (BTV) using a SIB technique in 5 fractions. All plans were generated by Pinnacle3 Autoplanning using 6MV dual-arc VMAT technique for flattened (FF) and flattening filter-free beams (FFF). An overlap volume (OLV) between the PRV duodenum and the PTV was defined to correlate with the ability to boost the BTV. Dosimetric metrics for BTV and PTV coverage, maximal doses for serial OARs, integral dose, conformation numbers, and dose contrast indexes were used to analyze the dosimetric results. Dose accuracy was validated using the PTW Octavius-4D phantom together with the 1500 2D-array. Differences between FF and FFF plans were quantified using the Wilcoxon matched-pair signed rank. Results: Full prescription doses to the 95% of PTV and BTV can be delivered to patients with no OLV. BTV mean dose was >90% of the prescribed doses for all patients at all dose levels. Compared to FF plans, FFF plans showed significant reduced integral doses, larger number of MUs, and reduced beam-on-times up to 51% for the highest dose level. Despite plan complexity, pre-treatment verification reported a gamma pass-rate greater than the acceptance threshold of 95% for all FF and FFF plans for 3%-2 mm criteria. Conclusions: The SIB-SBRT strategy with Autoplanning was dosimetrically feasible. Ablative doses up to 50 Gy in 5 fractions can be delivered to the BTV for almost all patients respecting all the normal tissue constraints. A prospective clinical trial based on SBRT strategy using SIB-VMAT technique with FFF beams seems to be justified.
Cilla S., Ianiro A., Romano C., Deodato F., Macchia G., Viola P., et al. (2020). Automated treatment planning as a dose escalation strategy for stereotactic radiation therapy in pancreatic cancer. JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 21(11), 48-57 [10.1002/acm2.13025].
Automated treatment planning as a dose escalation strategy for stereotactic radiation therapy in pancreatic cancer
Buwenge M.;Cammelli S.;Morganti A. G.
2020
Abstract
Purpose: To assess the feasibility of automated stereotactic volumetric modulated arc therapy (SBRT-VMAT) planning using a simultaneous integrated boost (SIB) approach as a dose escalation strategy for SBRT in pancreatic cancer. Methods: Twelve patients with pancreatic cancer were retrospectively replanned. Dose prescription was 30 Gy to the planning target volume (PTV) and was escalated up to 50 Gy to the boost target volume (BTV) using a SIB technique in 5 fractions. All plans were generated by Pinnacle3 Autoplanning using 6MV dual-arc VMAT technique for flattened (FF) and flattening filter-free beams (FFF). An overlap volume (OLV) between the PRV duodenum and the PTV was defined to correlate with the ability to boost the BTV. Dosimetric metrics for BTV and PTV coverage, maximal doses for serial OARs, integral dose, conformation numbers, and dose contrast indexes were used to analyze the dosimetric results. Dose accuracy was validated using the PTW Octavius-4D phantom together with the 1500 2D-array. Differences between FF and FFF plans were quantified using the Wilcoxon matched-pair signed rank. Results: Full prescription doses to the 95% of PTV and BTV can be delivered to patients with no OLV. BTV mean dose was >90% of the prescribed doses for all patients at all dose levels. Compared to FF plans, FFF plans showed significant reduced integral doses, larger number of MUs, and reduced beam-on-times up to 51% for the highest dose level. Despite plan complexity, pre-treatment verification reported a gamma pass-rate greater than the acceptance threshold of 95% for all FF and FFF plans for 3%-2 mm criteria. Conclusions: The SIB-SBRT strategy with Autoplanning was dosimetrically feasible. Ablative doses up to 50 Gy in 5 fractions can be delivered to the BTV for almost all patients respecting all the normal tissue constraints. A prospective clinical trial based on SBRT strategy using SIB-VMAT technique with FFF beams seems to be justified.File | Dimensione | Formato | |
---|---|---|---|
2020_cilla_automated.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
1.59 MB
Formato
Adobe PDF
|
1.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.