Recent developments in the field of smart sensing systems enable performing simple onboard operations which are increasingly used for the decentralization of complex procedures in the context of vibration-based structural health monitoring (SHM). Vibration data collected by multiple sensors are traditionally used to identify damage-sensitive features (DSFs) in a centralized topology. However, dealing with large infrastructures and wireless systems may be challenging due to their limited transmission range and to the energy consumption that increases with the complexity of the sensing network. Local DSFs based on data collected in the vicinity of inspection locations are the key to overcome geometric limits and easily design scalable wireless sensing systems. Furthermore, the onboard pre-processing of the raw data is necessary to reduce the transmission rate and improve the overall efficiency of the network. In this study, an effective method for real-time modal identification is used together with a local approximation of a damage feature, the interpolation error, to detect and localize damage due to a loss of stiffness. The DSF is evaluated using the responses recorded at small groups of sensors organized in a decentralized topology. This enables the onboard damage identification in real time thereby reducing computational effort and memory allocation requirements. Experimental tests conducted using real data confirm the robustness of the proposed method and the potential of its implementation onboard decentralized sensor networks.

Said Quqa, P.F.G. (2021). Clump interpolation error for the identification of damage using decentralized sensor networks. SMART STRUCTURES AND SYSTEMS, 27(2), 351-363 [10.12989/sss.2021.27.2.351].

Clump interpolation error for the identification of damage using decentralized sensor networks

Said Quqa
;
Luca Landi;Pier Paolo Diotallevi
2021

Abstract

Recent developments in the field of smart sensing systems enable performing simple onboard operations which are increasingly used for the decentralization of complex procedures in the context of vibration-based structural health monitoring (SHM). Vibration data collected by multiple sensors are traditionally used to identify damage-sensitive features (DSFs) in a centralized topology. However, dealing with large infrastructures and wireless systems may be challenging due to their limited transmission range and to the energy consumption that increases with the complexity of the sensing network. Local DSFs based on data collected in the vicinity of inspection locations are the key to overcome geometric limits and easily design scalable wireless sensing systems. Furthermore, the onboard pre-processing of the raw data is necessary to reduce the transmission rate and improve the overall efficiency of the network. In this study, an effective method for real-time modal identification is used together with a local approximation of a damage feature, the interpolation error, to detect and localize damage due to a loss of stiffness. The DSF is evaluated using the responses recorded at small groups of sensors organized in a decentralized topology. This enables the onboard damage identification in real time thereby reducing computational effort and memory allocation requirements. Experimental tests conducted using real data confirm the robustness of the proposed method and the potential of its implementation onboard decentralized sensor networks.
2021
Said Quqa, P.F.G. (2021). Clump interpolation error for the identification of damage using decentralized sensor networks. SMART STRUCTURES AND SYSTEMS, 27(2), 351-363 [10.12989/sss.2021.27.2.351].
Said Quqa, Pier Francesco Giordano, Maria Pina Limongelli, Luca Landi, Pier Paolo Diotallevi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/795845
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 9
social impact