We analyze some properties of a class of multiexponential maps appearing naturally in the geometric analysis of Carnot groups. We will see that such maps can be useful in at least two interesting problems: first, in relation to the analysis of some regularity properties of horizontally convex sets. Then, we will show that our multiexponential maps can be used to prove the Pansu differentiability of the subRiemannian distance from a fixed point.

Multiexponential maps in Carnot groups with applications to convexity and differentiability

Montanari A.;Morbidelli D.
2021

Abstract

We analyze some properties of a class of multiexponential maps appearing naturally in the geometric analysis of Carnot groups. We will see that such maps can be useful in at least two interesting problems: first, in relation to the analysis of some regularity properties of horizontally convex sets. Then, we will show that our multiexponential maps can be used to prove the Pansu differentiability of the subRiemannian distance from a fixed point.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/795478
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact