This chapter introduces a ripple correlation control (RCC) algorithm for tracking the maximum power point (MPP) for a flying capacitor three-level three-phase photovoltaic (PV) system. Although RCC maximum power point tracking (MPPT) method has been widely used on single-phase plants, a three-phase implementation based on sinusoidal carrier PWM has not been presented yet. The inherent oscillations of the PV current and voltage are employed as a perturbation for the RCC MPPT system. The proposed algorithm adopts the PV current and voltage 3rd harmonic component for estimating the power (or current) derivative, dPpv/dVpv (or dIpv/dVpv). Firstly, referring to the carrier-based sinusoidal pulse width modulation (SPWM), the flying capacitor inverter modulation scheme is presented. Secondly, the proposed RCC MPPT method is introduced. Finally, multiple MATLAB-/Simulink-based simulations of the RCC MPPT algorithm acting on a grid-connected PV system are provided. Both steady-state and dynamic (irradiance increase and decrease) conditions present good performances.

Ripple correlation control MPPT scheme applied to a three-phase flying capacitor PV system

Ricco M.
;
Hammami M.;Mandrioli R.;Grandi G.
2020

Abstract

This chapter introduces a ripple correlation control (RCC) algorithm for tracking the maximum power point (MPP) for a flying capacitor three-level three-phase photovoltaic (PV) system. Although RCC maximum power point tracking (MPPT) method has been widely used on single-phase plants, a three-phase implementation based on sinusoidal carrier PWM has not been presented yet. The inherent oscillations of the PV current and voltage are employed as a perturbation for the RCC MPPT system. The proposed algorithm adopts the PV current and voltage 3rd harmonic component for estimating the power (or current) derivative, dPpv/dVpv (or dIpv/dVpv). Firstly, referring to the carrier-based sinusoidal pulse width modulation (SPWM), the flying capacitor inverter modulation scheme is presented. Secondly, the proposed RCC MPPT method is introduced. Finally, multiple MATLAB-/Simulink-based simulations of the RCC MPPT algorithm acting on a grid-connected PV system are provided. Both steady-state and dynamic (irradiance increase and decrease) conditions present good performances.
Lecture Notes in Electrical Engineering
13
24
Ricco M.; Hammami M.; Mandrioli R.; Grandi G.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/795430
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact