We prove that a large class of expanding maps of the unit interval with a C2-regular indifferent fixed point in 0 and full increasing branches are global-local mixing. This class includes the standard Pomeau-Manneville maps T(x) = x+xp+1 mod 1 (p ≥ 1), the Liverani-Saussol-Vaienti maps (with index p ≥ 1) and many generalizations thereof.
Bonanno C., Lenci M. (2021). Pomeau-Manneville maps are global-local mixing. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 41(3), 1051-1069 [10.3934/dcds.2020309].
Pomeau-Manneville maps are global-local mixing
Lenci M.
2021
Abstract
We prove that a large class of expanding maps of the unit interval with a C2-regular indifferent fixed point in 0 and full increasing branches are global-local mixing. This class includes the standard Pomeau-Manneville maps T(x) = x+xp+1 mod 1 (p ≥ 1), the Liverani-Saussol-Vaienti maps (with index p ≥ 1) and many generalizations thereof.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
pm-arxiv-3.pdf
Open Access dal 30/08/2021
Descrizione: versione finale del preprint, accettata dalla rivista
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
511.64 kB
Formato
Adobe PDF
|
511.64 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.