We prove that a large class of expanding maps of the unit interval with a C2-regular indifferent fixed point in 0 and full increasing branches are global-local mixing. This class includes the standard Pomeau-Manneville maps T(x) = x+xp+1 mod 1 (p ≥ 1), the Liverani-Saussol-Vaienti maps (with index p ≥ 1) and many generalizations thereof.

Bonanno C., Lenci M. (2021). Pomeau-Manneville maps are global-local mixing. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 41(3), 1051-1069 [10.3934/dcds.2020309].

Pomeau-Manneville maps are global-local mixing

Lenci M.
2021

Abstract

We prove that a large class of expanding maps of the unit interval with a C2-regular indifferent fixed point in 0 and full increasing branches are global-local mixing. This class includes the standard Pomeau-Manneville maps T(x) = x+xp+1 mod 1 (p ≥ 1), the Liverani-Saussol-Vaienti maps (with index p ≥ 1) and many generalizations thereof.
2021
Bonanno C., Lenci M. (2021). Pomeau-Manneville maps are global-local mixing. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 41(3), 1051-1069 [10.3934/dcds.2020309].
Bonanno C.; Lenci M.
File in questo prodotto:
File Dimensione Formato  
pm-arxiv-3.pdf

Open Access dal 30/08/2021

Descrizione: versione finale del preprint, accettata dalla rivista
Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 511.64 kB
Formato Adobe PDF
511.64 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/794558
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact