The present work shows how 3D models extracted from a computerised tomography (CT) scan can be processed to be 3D printed into 1:1 orthopedic scale models, which find unquestionable utility in pre-operative surgical planning. Relying on the CAT-CAD methodology, which produces a 3D surface called “mesh” from diagnostic images of body parts, the CAD-AM process elaborates a volumetric bone model which a cost-efficient FDM printer can work with. The suitable materials for these applications are PLA polymers, due to their thermo-mechanical properties, affordability and ecological sustainability; these anatomic 3D printed models allows surgeons to accurately see bones injuries and trauma, resulting in a minimisation of risk and a much more flowing doctor-patient communication. Furthermore these 3D printed objects can be manufactured with specific density in order to simulate bone tissues, resulting in a useful tool through which experienced surgeons can pass on their knowledge to medical students at a very reasonable cost, overcoming the glaring limitations of two-dimensional images provided by CT scans. Here represented is a 3D printed 1:1 scale model of a femur donated to the Bone Bank of IOR-Rizzoli Orthopaedic Institute in Bologna.

Frizziero L., Donnici G., Liverani A., Santi G., Neri M., Papaleo P., et al. (2020). Description of the cad-am process for 3d bone printing: The case study of a femur. IEOM Society.

Description of the cad-am process for 3d bone printing: The case study of a femur

Frizziero L.
Conceptualization
;
Donnici G.
Methodology
;
Liverani A.
Software
;
Santi G.
Investigation
;
Napolitano F.
Writing – Original Draft Preparation
2020

Abstract

The present work shows how 3D models extracted from a computerised tomography (CT) scan can be processed to be 3D printed into 1:1 orthopedic scale models, which find unquestionable utility in pre-operative surgical planning. Relying on the CAT-CAD methodology, which produces a 3D surface called “mesh” from diagnostic images of body parts, the CAD-AM process elaborates a volumetric bone model which a cost-efficient FDM printer can work with. The suitable materials for these applications are PLA polymers, due to their thermo-mechanical properties, affordability and ecological sustainability; these anatomic 3D printed models allows surgeons to accurately see bones injuries and trauma, resulting in a minimisation of risk and a much more flowing doctor-patient communication. Furthermore these 3D printed objects can be manufactured with specific density in order to simulate bone tissues, resulting in a useful tool through which experienced surgeons can pass on their knowledge to medical students at a very reasonable cost, overcoming the glaring limitations of two-dimensional images provided by CT scans. Here represented is a 3D printed 1:1 scale model of a femur donated to the Bone Bank of IOR-Rizzoli Orthopaedic Institute in Bologna.
2020
Proceedings of the International Conference on Industrial Engineering and Operations Management
2258
2266
Frizziero L., Donnici G., Liverani A., Santi G., Neri M., Papaleo P., et al. (2020). Description of the cad-am process for 3d bone printing: The case study of a femur. IEOM Society.
Frizziero L.; Donnici G.; Liverani A.; Santi G.; Neri M.; Papaleo P.; Napolitano F.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/794164
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? ND
social impact