The present work shows how 3D models extracted from a computerised tomography (CT) scan can be processed to be 3D printed into 1:1 orthopedic scale models, which find unquestionable utility in pre-operative surgical planning. Relying on the CAT-CAD methodology, which produces a 3D surface called “mesh” from diagnostic images of body parts, the CAD-AM process elaborates a volumetric bone model which a cost-efficient FDM printer can work with. The suitable materials for these applications are PLA polymers, due to their thermo-mechanical properties, affordability and ecological sustainability; these anatomic 3D printed models allows surgeons to accurately see bones injuries and trauma, resulting in a minimisation of risk and a much more flowing doctor-patient communication. Furthermore these 3D printed objects can be manufactured with specific density in order to simulate bone tissues, resulting in a useful tool through which experienced surgeons can pass on their knowledge to medical students at a very reasonable cost, overcoming the glaring limitations of two-dimensional images provided by CT scans. Here represented is a 3D printed 1:1 scale model of a femur donated to the Bone Bank of IOR-Rizzoli Orthopaedic Institute in Bologna.
Frizziero L., Donnici G., Liverani A., Santi G., Neri M., Papaleo P., et al. (2020). Description of the cad-am process for 3d bone printing: The case study of a femur. IEOM Society.
Description of the cad-am process for 3d bone printing: The case study of a femur
Frizziero L.
Conceptualization
;Donnici G.Methodology
;Liverani A.Software
;Santi G.Investigation
;Napolitano F.Writing – Original Draft Preparation
2020
Abstract
The present work shows how 3D models extracted from a computerised tomography (CT) scan can be processed to be 3D printed into 1:1 orthopedic scale models, which find unquestionable utility in pre-operative surgical planning. Relying on the CAT-CAD methodology, which produces a 3D surface called “mesh” from diagnostic images of body parts, the CAD-AM process elaborates a volumetric bone model which a cost-efficient FDM printer can work with. The suitable materials for these applications are PLA polymers, due to their thermo-mechanical properties, affordability and ecological sustainability; these anatomic 3D printed models allows surgeons to accurately see bones injuries and trauma, resulting in a minimisation of risk and a much more flowing doctor-patient communication. Furthermore these 3D printed objects can be manufactured with specific density in order to simulate bone tissues, resulting in a useful tool through which experienced surgeons can pass on their knowledge to medical students at a very reasonable cost, overcoming the glaring limitations of two-dimensional images provided by CT scans. Here represented is a 3D printed 1:1 scale model of a femur donated to the Bone Bank of IOR-Rizzoli Orthopaedic Institute in Bologna.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.