In this paper we provide some relationships between Catalan’s constant and the 3F2 and 4F3 hypergeometric functions, deriving them from some parametric integrals. In particular, using the complete elliptic integral of the first kind, we found an alternative proof of a result of Ramanujan for 3F2, a second identity related to 4F3 and using the complete elliptic integral of the second kind we obtain an identity by Adamchik.

Ferretti F., Gambini A., Ritelli D. (2020). Identities for Catalan’s Constant Arising from Integrals Depending on a Parameter. ACTA MATHEMATICA SINICA, 36(10), 1083-1093 [10.1007/s10114-020-9451-9].

Identities for Catalan’s Constant Arising from Integrals Depending on a Parameter

Ferretti F.;Gambini A.
;
Ritelli D.
2020

Abstract

In this paper we provide some relationships between Catalan’s constant and the 3F2 and 4F3 hypergeometric functions, deriving them from some parametric integrals. In particular, using the complete elliptic integral of the first kind, we found an alternative proof of a result of Ramanujan for 3F2, a second identity related to 4F3 and using the complete elliptic integral of the second kind we obtain an identity by Adamchik.
2020
Ferretti F., Gambini A., Ritelli D. (2020). Identities for Catalan’s Constant Arising from Integrals Depending on a Parameter. ACTA MATHEMATICA SINICA, 36(10), 1083-1093 [10.1007/s10114-020-9451-9].
Ferretti F.; Gambini A.; Ritelli D.
File in questo prodotto:
File Dimensione Formato  
subm2020_e.pdf

Open Access dal 16/11/2021

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 487.44 kB
Formato Adobe PDF
487.44 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/793515
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact