A gravity current originated by a power-law viscous fluid propagating on a horizontal rigid plane below a fluid of lower density is examined. The intruding fluid is considered to have a pure Ostwald power-law constitutive equation. The set of equations governing the flow is presented, under the assumption of buoyancy-viscous balance and negligible inertial forces. The conditions under which the above assumptions are valid are examined and a self-similar solution in terms of a nonlinear ordinary differential equation is derived. For the release of a time-variable volume of fluid, the shape of the gravity current is determined numerically using an approximate analytical solution derived close to the current front as a starting condition. A closed-form analytical expression is derived for the special case of the release of a fixed volume of fluid. The space-time development of the gravity current is discussed for different flow behavior indexes.
V. Di Federico, S. Cintoli, S. Malavasi (2006). Viscous spreading of non-Newtonian gravity currents on a plane. MECCANICA, 41(2), 207-217.
Viscous spreading of non-Newtonian gravity currents on a plane
DI FEDERICO, VITTORIO;CINTOLI, STEFANO;
2006
Abstract
A gravity current originated by a power-law viscous fluid propagating on a horizontal rigid plane below a fluid of lower density is examined. The intruding fluid is considered to have a pure Ostwald power-law constitutive equation. The set of equations governing the flow is presented, under the assumption of buoyancy-viscous balance and negligible inertial forces. The conditions under which the above assumptions are valid are examined and a self-similar solution in terms of a nonlinear ordinary differential equation is derived. For the release of a time-variable volume of fluid, the shape of the gravity current is determined numerically using an approximate analytical solution derived close to the current front as a starting condition. A closed-form analytical expression is derived for the special case of the release of a fixed volume of fluid. The space-time development of the gravity current is discussed for different flow behavior indexes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.