The reported data are related to a research paper entitled "Phosphorylated cofilin-2 is more prone to oxidative modifications on Cys39 and favors amyloid fibril formation" [1]. Info about the formation and redox properties of the disulfide bridge of a protein is quite difficult to obtain and only in a few cases was it possible to observe a cyclic voltammetry (CV) signal [2,3]. Human cofilin-2 contains two cysteines (Cys39 and Cys80) which can be oxidized in suitable conditions and form a disulfide bridge [1]. For this purpose, CV measurements were carried out on human cofilin-2 WT and its mutant S3D immobilized on a gold electrode coated by an anionic self-assembled monolayer (SAM), after a pre-oxidation time which was fundamental for observing a CV signal relating to the oxidation/reduction process of the disulfide bridge of the proteins. The data include CV curves obtained with and without electrochemical pre-oxidation and after oxidation with H2O2. In addition, the plot of the cathodic peak current vs. electrochemical pre-oxidation time and the pH dependence of the formal potential (E°’) are reported. The data obtained by CV measurements were used to determine the time required to form the disulfide bridge for the immobilized proteins and, consequently, to observe the CV signal, to calculate the E°’ values and analyse the pH dependence of E°’. The electrochemical data were provided which will be useful for further electrochemical investigations regarding proteins bearing disulfide bridge(s) or cysteines prone to oxidation.

Pignataro M., Rocco G.D., Lancellotti L., Bernini F., Subramanian K., Castellini E., et al. (2020). Electrochemical data on redox properties of human Cofilin-2 and its Mutant S3D. DATA IN BRIEF, 33, 1-8 [10.1016/j.dib.2020.106345].

Electrochemical data on redox properties of human Cofilin-2 and its Mutant S3D

Bernini F.;Castellini E.;Malferrari D.;Moro D.;Valdre Giovanni;Monte F. D.
2020

Abstract

The reported data are related to a research paper entitled "Phosphorylated cofilin-2 is more prone to oxidative modifications on Cys39 and favors amyloid fibril formation" [1]. Info about the formation and redox properties of the disulfide bridge of a protein is quite difficult to obtain and only in a few cases was it possible to observe a cyclic voltammetry (CV) signal [2,3]. Human cofilin-2 contains two cysteines (Cys39 and Cys80) which can be oxidized in suitable conditions and form a disulfide bridge [1]. For this purpose, CV measurements were carried out on human cofilin-2 WT and its mutant S3D immobilized on a gold electrode coated by an anionic self-assembled monolayer (SAM), after a pre-oxidation time which was fundamental for observing a CV signal relating to the oxidation/reduction process of the disulfide bridge of the proteins. The data include CV curves obtained with and without electrochemical pre-oxidation and after oxidation with H2O2. In addition, the plot of the cathodic peak current vs. electrochemical pre-oxidation time and the pH dependence of the formal potential (E°’) are reported. The data obtained by CV measurements were used to determine the time required to form the disulfide bridge for the immobilized proteins and, consequently, to observe the CV signal, to calculate the E°’ values and analyse the pH dependence of E°’. The electrochemical data were provided which will be useful for further electrochemical investigations regarding proteins bearing disulfide bridge(s) or cysteines prone to oxidation.
2020
Pignataro M., Rocco G.D., Lancellotti L., Bernini F., Subramanian K., Castellini E., et al. (2020). Electrochemical data on redox properties of human Cofilin-2 and its Mutant S3D. DATA IN BRIEF, 33, 1-8 [10.1016/j.dib.2020.106345].
Pignataro M.; Rocco G.D.; Lancellotti L.; Bernini F.; Subramanian K.; Castellini E.; Bortolotti C.A.; Malferrari D.; Moro D.; Valdre Giovanni; Borsari...espandi
File in questo prodotto:
File Dimensione Formato  
Electrochemical data on redox properties.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 572.58 kB
Formato Adobe PDF
572.58 kB Adobe PDF Visualizza/Apri
ScienceDirect_files_24Sep2024_10-23-04.990.zip

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 1.37 MB
Formato Zip File
1.37 MB Zip File Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/793299
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact