Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
CRIS Current Research Information System
Background: Mood disorders (including major depressive disorder and bipolar disorder) affect 10% to 20% of the population. They range from brief, mild episodes to severe, incapacitating conditions that markedly impact lives. Multiple approaches have shown considerable sharing of risk factors across mood disorders despite their diagnostic distinction. Methods: To clarify the shared molecular genetic basis of major depressive disorder and bipolar disorder and to highlight disorder-specific associations, we meta-analyzed data from the latest Psychiatric Genomics Consortium genome-wide association studies of major depression (including data from 23andMe) and bipolar disorder, and an additional major depressive disorder cohort from UK Biobank (total: 185,285 cases, 439,741 controls; nonoverlapping N = 609,424). Results: Seventy-three loci reached genome-wide significance in the meta-analysis, including 15 that are novel for mood disorders. More loci from the Psychiatric Genomics Consortium analysis of major depression than from that for bipolar disorder reached genome-wide significance. Genetic correlations revealed that type 2 bipolar disorder correlates strongly with recurrent and single-episode major depressive disorder. Systems biology analyses highlight both similarities and differences between the mood disorders, particularly in the mouse brain cell types implicated by the expression patterns of associated genes. The mood disorders also differ in their genetic correlation with educational attainment—the relationship is positive in bipolar disorder but negative in major depressive disorder. Conclusions: The mood disorders share several genetic associations, and genetic studies of major depressive disorder and bipolar disorder can be combined effectively to enable the discovery of variants not identified by studying either disorder alone. However, we demonstrate several differences between these disorders. Analyzing subtypes of major depressive disorder and bipolar disorder provides evidence for a genetic mood disorders spectrum.
Coleman J.R.I., Gaspar H.A., Bryois J., Byrne E.M., Forstner A.J., Holmans P.A., et al. (2020). The Genetics of the Mood Disorder Spectrum: Genome-wide Association Analyses of More Than 185,000 Cases and 439,000 Controls. BIOLOGICAL PSYCHIATRY, 88(2), 169-184 [10.1016/j.biopsych.2019.10.015].
The Genetics of the Mood Disorder Spectrum: Genome-wide Association Analyses of More Than 185,000 Cases and 439,000 Controls
Coleman J. R. I.;Gaspar H. A.;Bryois J.;Byrne E. M.;Forstner A. J.;Holmans P. A.;de Leeuw C. A.;Mattheisen M.;McQuillin A.;Whitehead Pavlides J. M.;Pers T. H.;Ripke S.;Stahl E. A.;Steinberg S.;Trubetskoy V.;Trzaskowski M.;Wang Y.;Abbott L.;Abdellaoui A.;Adams M. J.;Adolfsson A. N.;Agerbo E.;Akil H.;Albani D.;Alliey-Rodriguez N.;Als T. D.;Andlauer T. F. M.;Anjorin A.;Antilla V.;Van der Auwera S.;Awasthi S.;Bacanu S. -A.;Badner J. A.;Baekvad-Hansen M.;Barchas J. D.;Bass N.;Bauer M.;Beekman A. T. F.;Belliveau R.;Bergen S. E.;Bigdeli T. B.;Binder E. B.;Boen E.;Boks M.;Boocock J.;Budde M.;Bunney W.;Burmeister M.;Buttenschon H. N.;Bybjerg-Grauholm J.;Byerley W.;Cai N.;Casas M.;Castelao E.;Cerrato F.;Cervantes P.;Chambert K.;Charney A. W.;Chen D.;Christensen J. H.;Churchhouse C.;St Clair D.;Clarke T. -K.;Colodro-Conde L.;Coryell W.;Couvy-Duchesne B.;Craig D. W.;Crawford G. E.;Cruceanu C.;Czerski P. M.;Dale A. M.;Davies G.;Deary I. J.;Degenhardt F.;Del-Favero J.;DePaulo J. R.;Derks E. M.;Direk N.;Djurovic S.;Dobbyn A. L.;Dolan C. V.;Dumont A.;Dunn E. C.;Eley T. C.;Elvsashagen T.;Escott-Price V.;Fan C. C.;Finucane H. K.;Fischer S. B.;Flickinger M.;Foo J. C.;Foroud T. M.;Forty L.;Frank J.;Fraser C.;Freimer N. B.;Frisen L.;Gade K.;Gage D.;Garnham J.;Giambartolomei C.;Goes F. S.;Goldstein J.;Gordon S. D.;Gordon-Smith K.;Green E. K.;Green M. J.;Greenwood T. A.;Grove J.;Guan W.;Hall L. S.;Hamshere M. L.;Hansen C. S.;Hansen T. F.;Hautzinger M.;Heilbronner U.;van Hemert A. M.;Herms S.;Hickie I. B.;Hipolito M.;Hoffmann P.;Holland D.;Homuth G.;Horn C.;Hottenga J. -J.;Huckins L.;Ising M.;Jamain S.;Jansen R.;Johnson J. S.;de Jong S.;Jorgenson E.;Jureus A.;Kandaswamy R.;Karlsson R.;Kennedy J. L.;Hassan Kiadeh F. F.;Kittel-Schneider S.;Knowles J. A.;Kogevinas M.;Kohane I. S.;Koller A. C.;Kraft J.;Kretzschmar W. W.;Krogh J.;Kupka R.;Kutalik Z.;Lavebratt C.;Lawrence J.;Lawson W. B.;Leber M.;Lee P. H.;Levy S. E.;Li J. Z.;Li Y.;Lind P. A.;Liu C.;Olde Loohuis L. M.;Maaser A.;MacIntyre D. J.;MacKinnon D. F.;Mahon P. B.;Maier W.;Maier R. M.;Marchini J.;Martinsson L.;Mbarek H.;McCarroll S.;McGrath P.;McGuffin P.;McInnis M. G.;McKay J. D.;Medeiros H.;Medland S. E.;Mehta D.;Meng F.;Middeldorp C. M.;Mihailov E.;Milaneschi Y.;Milani L.;Mirza S. S.;Mondimore F. M.;Montgomery G. W.;Morris D. W.;Mostafavi S.;Muhleisen T. W.;Mullins N.;Nauck M.;Ng B.;Nguyen H.;Nievergelt C. M.;Nivard M. G.;Nwulia E. A.;Nyholt D. R.;O'Donovan C.;O'Reilly P. F.;Ori A. P. S.;Oruc L.;Osby U.;Oskarsson H.;Painter J. N.;Parra J. G.;Pedersen C. B.;Pedersen M. G.;Perry A.;Peterson R. E.;Pettersson E.;Peyrot W. J.;Pfennig A.;Pistis G.;Purcell S. M.;Quiroz J. A.;Qvist P.;Regeer E. J.;Reif A.;Reinbold C. S.;Rice J. P.;Riley B. P.;Rivas F.;Rivera M.;Roussos P.;Ruderfer D. M.;Ryu E.;Sanchez-Mora C.;Schatzberg A. F.;Scheftner W. A.;Schoevers R.;Schork N. J.;Schulte E. C.;Shehktman T.;Shen L.;Shi J.;Shilling P. D.;Shyn S. I.;Sigurdsson E.;Slaney C.;Smeland O. B.;Smit J. H.;Smith D. J.;Sobell J. L.;Spijker A. T.;Steffens M.;Strauss J. S.;Streit F.;Strohmaier J.;Szelinger S.;Tansey K. E.;Teismann H.;Teumer A.;Thompson R. C.;Thompson W.;Thomson P. A.;Thorgeirsson T. E.;Traylor M.;Treutlein J.;Uitterlinden A. G.;Umbricht D.;Vedder H.;Viktorin A.;Visscher P. M.;Wang W.;Watson S. J.;Webb B. T.;Weickert C. S.;Weickert T. W.;Weinsheimer S. M.;Wellmann J.;Willemsen G.;Witt S. H.;Wu Y.;Xi H. S.;Xu W.;Yang J.;Young A. H.;Zandi P.;Zhang P.;Zhang F.;Zollner S.;Adolfsson R.;Agartz I.;Alda M.;Arolt V.;Backlund L.;Baune B. T.;Bellivier F.;Berger K.;Berrettini W. H.;Biernacka J. M.;Blackwood D. H. R.;Boehnke M.;Boomsma D. I.;Corvin A.;Craddock N.;Daly M. J.;Dannlowski U.;Domenici E.;Domschke K.;Esko T.;Etain B.;Frye M.;Fullerton J. M.;Gershon E. S.;de Geus E. J. C.;Gill M.;Goes F.;Grabe H. J.;Grigoroiu-Serbanescu M.;Hamilton S. P.;Hauser J.;Hayward C.;Heath A. C.;Hougaard D. M.;Hultman C. M.;Jones I.;Jones L. A.;Kahn R. S.;Kendler K. S.;Kirov G.;Kloiber S.;Landen M.;Leboyer M.;Lewis G.;Li Q. S.;Lissowska J.;Lucae S.;Madden P. A. F.;Magnusson P. K.;Martin N. G.;Mayoral F.;McElroy S. L.;McIntosh A. M.;McMahon F. J.;Melle I.;Metspalu A.;Mitchell P. B.;Morken G.;Mors O.;Mortensen P. B.;Muller-Myhsok B.;Myers R. M.;Neale B. M.;Nimgaonkar V.;Nordentoft M.;Nothen M. M.;O'Donovan M. C.;Oedegaard K. J.;Owen M. J.;Paciga S. A.;Pato C.;Pato M. T.;Pedersen N. L.;Penninx B. W. J. H.;Perlis R. H.;Porteous D. J.;Posthuma D.;Potash J. B.;Preisig M.;Ramos-Quiroga J. A.;Ribases M.;Rietschel M.;Rouleau G. A.;Schaefer C.;Schalling M.;Schofield P. R.;Schulze T. G.;Serretti A.;Smoller J. W.;Stefansson H.;Stefansson K.;Stordal E.;Tiemeier H.;Turecki G.;Uher R.;Vaaler A. E.;Vieta E.;Vincent J. B.;Volzke H.;Weissman M. M.;Werge T.;Andreassen O. A.;Borglum A. D.;Cichon S.;Edenberg H. J.;Di Florio A.;Kelsoe J.;Levinson D. F.;Lewis C. M.;Nurnberger J. I.;Ophoff R. A.;Scott L. J.;Sklar P.;Sullivan P. F.;Wray N. R.;Breen G.
2020
Abstract
Background: Mood disorders (including major depressive disorder and bipolar disorder) affect 10% to 20% of the population. They range from brief, mild episodes to severe, incapacitating conditions that markedly impact lives. Multiple approaches have shown considerable sharing of risk factors across mood disorders despite their diagnostic distinction. Methods: To clarify the shared molecular genetic basis of major depressive disorder and bipolar disorder and to highlight disorder-specific associations, we meta-analyzed data from the latest Psychiatric Genomics Consortium genome-wide association studies of major depression (including data from 23andMe) and bipolar disorder, and an additional major depressive disorder cohort from UK Biobank (total: 185,285 cases, 439,741 controls; nonoverlapping N = 609,424). Results: Seventy-three loci reached genome-wide significance in the meta-analysis, including 15 that are novel for mood disorders. More loci from the Psychiatric Genomics Consortium analysis of major depression than from that for bipolar disorder reached genome-wide significance. Genetic correlations revealed that type 2 bipolar disorder correlates strongly with recurrent and single-episode major depressive disorder. Systems biology analyses highlight both similarities and differences between the mood disorders, particularly in the mouse brain cell types implicated by the expression patterns of associated genes. The mood disorders also differ in their genetic correlation with educational attainment—the relationship is positive in bipolar disorder but negative in major depressive disorder. Conclusions: The mood disorders share several genetic associations, and genetic studies of major depressive disorder and bipolar disorder can be combined effectively to enable the discovery of variants not identified by studying either disorder alone. However, we demonstrate several differences between these disorders. Analyzing subtypes of major depressive disorder and bipolar disorder provides evidence for a genetic mood disorders spectrum.
Coleman J.R.I., Gaspar H.A., Bryois J., Byrne E.M., Forstner A.J., Holmans P.A., et al. (2020). The Genetics of the Mood Disorder Spectrum: Genome-wide Association Analyses of More Than 185,000 Cases and 439,000 Controls. BIOLOGICAL PSYCHIATRY, 88(2), 169-184 [10.1016/j.biopsych.2019.10.015].
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/793189
Attenzione
Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo
Citazioni
36
145
116
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.