In the last few years, two technologies have been developed to enable direct exchange of information between vehicles. These technologies, currently seen as alternatives, are ITS-G5, as commonly referred in Europe, and sidelink LTE-vehicle-to-everything (LTE-V2X) (one of the solutions of the so-called cellular-V2X, C-V2X). For this reason, the attention has been mostly concentrated on comparing them and remarking their strengths and weaknesses to motivate a choice. Differently, in this work we focus on a scenario where both are used in the same area and using the same frequency channels, without the assistance from any infrastructure. Our results show that under co-channel coexistence the range of ITS-G5 is severely degraded, while impact on LTE-V2X is marginal. Additionally, a mitigation method where the CAM data generation is constrained to periodical intervals is shown to reduce the impact of co-channel coexistence, with less degradation on ITS-G5 performance and even improvement for LTE-V2X.
Bazzi A., Zanella A., Sarris I., Martinez V. (2020). Co-channel Coexistence: Let ITS-G5 and Sidelink C-V2X Make Peace. Institute of Electrical and Electronics Engineers Inc. [10.1109/ICMIM48759.2020.9299042].
Co-channel Coexistence: Let ITS-G5 and Sidelink C-V2X Make Peace
Bazzi A.
Primo
;
2020
Abstract
In the last few years, two technologies have been developed to enable direct exchange of information between vehicles. These technologies, currently seen as alternatives, are ITS-G5, as commonly referred in Europe, and sidelink LTE-vehicle-to-everything (LTE-V2X) (one of the solutions of the so-called cellular-V2X, C-V2X). For this reason, the attention has been mostly concentrated on comparing them and remarking their strengths and weaknesses to motivate a choice. Differently, in this work we focus on a scenario where both are used in the same area and using the same frequency channels, without the assistance from any infrastructure. Our results show that under co-channel coexistence the range of ITS-G5 is severely degraded, while impact on LTE-V2X is marginal. Additionally, a mitigation method where the CAM data generation is constrained to periodical intervals is shown to reduce the impact of co-channel coexistence, with less degradation on ITS-G5 performance and even improvement for LTE-V2X.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.