Fire exposure of storage and transportation vessels of hazardous materials (including pressure liquefied gases) can result in BLEVEs and other high-consequence incidents with large societal and economic impacts. To reduce risk most countries have numerous regulations, codes of practice and guidance notes covering the design, operation and maintenance of vessels and thermal protection systems. Yet despite such regulations there remains no internationally accepted fire test procedure for pressure vessel and accompanying thermal protection systems that is capable of meeting a range of regulatory requirements. This paper considers some of the regulations in place in the western world and considers the origin of these based on large and medium-scale testing conducted to date. It examines conditions found in these tests to propose a set of recommendations on which to base a standard method of test. These recommendations are proposed as being representative of a credible large pool fire scenario that may occur.
Bradley I., Scarponi G.E., Otremba F., Birk A.M. (2021). An overview of test standards and regulations relevant to the fire testing of pressure vessels. PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 145, 150-156 [10.1016/j.psep.2020.07.047].
An overview of test standards and regulations relevant to the fire testing of pressure vessels
Scarponi G. E.;Birk A. M.
2021
Abstract
Fire exposure of storage and transportation vessels of hazardous materials (including pressure liquefied gases) can result in BLEVEs and other high-consequence incidents with large societal and economic impacts. To reduce risk most countries have numerous regulations, codes of practice and guidance notes covering the design, operation and maintenance of vessels and thermal protection systems. Yet despite such regulations there remains no internationally accepted fire test procedure for pressure vessel and accompanying thermal protection systems that is capable of meeting a range of regulatory requirements. This paper considers some of the regulations in place in the western world and considers the origin of these based on large and medium-scale testing conducted to date. It examines conditions found in these tests to propose a set of recommendations on which to base a standard method of test. These recommendations are proposed as being representative of a credible large pool fire scenario that may occur.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.