Diabetes is an autoimmune disease characterized by glucose levels dysfunctions. It involves continuous monitoring combined with insulin treatment. Nowadays, continuous glucose monitoring systems (CGMs) have led to a greater availability of data. These can be effectively used by machine learning techniques to infer future values of the glycaemic concentration, allowing the early prevention of dangerous states and a better optimisation of the diabetic treatment. In this work, we investigate a patient-specialized prediction model. Thus, we designed a specialized solution based on Long Short-Term Memory (LSTM) neural network. Our solution was experimentally compared with two literature approaches, respectively based on Feed-Forward (FNN) and Recurrent (RNN) neural networks. The experimental results have highlighted that our LSTM solution obtained good performance both for short- and long-term glucose level inference (60 min.), overcoming the other methods both in terms of correlation between measured and predicted glucose signal and in terms of clinical outcome.

Aliberti A., Bagatin A., Acquaviva A., Macii E., Patti E. (2020). Data driven patient-specialized neural networks for blood glucose prediction. Institute of Electrical and Electronics Engineers Inc. [10.1109/ICMEW46912.2020.9105950].

Data driven patient-specialized neural networks for blood glucose prediction

Acquaviva A.;
2020

Abstract

Diabetes is an autoimmune disease characterized by glucose levels dysfunctions. It involves continuous monitoring combined with insulin treatment. Nowadays, continuous glucose monitoring systems (CGMs) have led to a greater availability of data. These can be effectively used by machine learning techniques to infer future values of the glycaemic concentration, allowing the early prevention of dangerous states and a better optimisation of the diabetic treatment. In this work, we investigate a patient-specialized prediction model. Thus, we designed a specialized solution based on Long Short-Term Memory (LSTM) neural network. Our solution was experimentally compared with two literature approaches, respectively based on Feed-Forward (FNN) and Recurrent (RNN) neural networks. The experimental results have highlighted that our LSTM solution obtained good performance both for short- and long-term glucose level inference (60 min.), overcoming the other methods both in terms of correlation between measured and predicted glucose signal and in terms of clinical outcome.
2020
2020 IEEE International Conference on Multimedia and Expo Workshops, ICMEW 2020
1
6
Aliberti A., Bagatin A., Acquaviva A., Macii E., Patti E. (2020). Data driven patient-specialized neural networks for blood glucose prediction. Institute of Electrical and Electronics Engineers Inc. [10.1109/ICMEW46912.2020.9105950].
Aliberti A.; Bagatin A.; Acquaviva A.; Macii E.; Patti E.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/791469
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact