We consider the following classical autonomous variational problem minimize F (v) =\int_a^b f (v(x), v (x)) dx : v ∈ AC([a, b]), v(a) = α, v(b) = β , where the Lagrangian f is possibly neither continuous, nor convex, nor coercive. We prove a monotonicity property of the minimizers stating that they satisfy the maximum principle or the minimum one. By virtue of such a property, applying recent results concerning constrained variational prob- lems, we derive a relaxation theorem, the DuBois-Reymond necessary condition and some existence or non-existence criteria.

G. Cupini, C. Marcelli (2011). Monotonicity properties of minimizers and relaxation for autonomous variational problems. ESAIM. COCV, 17, 222-242 [10.1051/cocv/2010001].

Monotonicity properties of minimizers and relaxation for autonomous variational problems

CUPINI, GIOVANNI;
2011

Abstract

We consider the following classical autonomous variational problem minimize F (v) =\int_a^b f (v(x), v (x)) dx : v ∈ AC([a, b]), v(a) = α, v(b) = β , where the Lagrangian f is possibly neither continuous, nor convex, nor coercive. We prove a monotonicity property of the minimizers stating that they satisfy the maximum principle or the minimum one. By virtue of such a property, applying recent results concerning constrained variational prob- lems, we derive a relaxation theorem, the DuBois-Reymond necessary condition and some existence or non-existence criteria.
2011
G. Cupini, C. Marcelli (2011). Monotonicity properties of minimizers and relaxation for autonomous variational problems. ESAIM. COCV, 17, 222-242 [10.1051/cocv/2010001].
G. Cupini; C. Marcelli
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/79079
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact