1. Microbial activity plays a central role in nitrogen (N) cycling, with effects on forest productivity. Although N biotransformations, such as nitrification, are known to occur in the soil, here we investigate whether nitrifiers are present in tree cano- pies and actively process atmospheric N. 2. This study was conducted in a Mediterranean holm oak (Quercus ilex L.) forest in Spain during the transition from hot dry summer to cool wet winter. We quanti- fied NH+4—N and NO−3—N fluxes for rainfall (RF) and throughfall (TF) and used δ15N, δ18O and Δ17O to elucidate sources of NO−3. Finally, we characterized microbial communities and abundance of nitrifiers on foliage, RF and TF water through me- tabarcoding and quantitative polymerase chain reaction respectively. 3. NO3—NfluxesatthesitewerelargerinTFthanRF,suggestingacontributionfrom dry deposition, as also supported by δ15N and δ18O. However, Δ17O indicated that about 20% of NO−3 in TF derived from canopies nitrification in August, after a severe drought, with a lower proportion in September (≈8%). This seasonal par- titioning between biologically and atmospherically derived NO−3 coincided with a decreasing trend of the abundance of archaeal nitrifiers. Tree canopies and TF had more diverse microbial communities than RF. Yet, RF showed higher variability in microbial composition, likely associated with the origin of air masses. 4. Synthesis. Atmospheric N deposition is significantly altered after passing through tree canopies. While nitrification has been proposed as one of the mechanisms re- sponsible for these changes, very few studies directly investigate its occurrence. Here, we showed that nitrification by epiphytic leaf microbes contributed to in- creasing NO3 in TF and that nitrifiers’ activity was reduced going from the dry and hot summer to the cool winter. Overall, these results highlight the power of isotope approaches to examine ecosystem‐scale processes.
Rossella Guerrieri, L.L. (2020). Partitioning between atmospheric deposition and canopy microbial nitrification into throughfall nitrate fluxes in a Mediterranean forest. JOURNAL OF ECOLOGY, 108(2), 626-640 [10.1111/1365-2745.13288].
Partitioning between atmospheric deposition and canopy microbial nitrification into throughfall nitrate fluxes in a Mediterranean forest
Rossella Guerrieri
Primo
;
2020
Abstract
1. Microbial activity plays a central role in nitrogen (N) cycling, with effects on forest productivity. Although N biotransformations, such as nitrification, are known to occur in the soil, here we investigate whether nitrifiers are present in tree cano- pies and actively process atmospheric N. 2. This study was conducted in a Mediterranean holm oak (Quercus ilex L.) forest in Spain during the transition from hot dry summer to cool wet winter. We quanti- fied NH+4—N and NO−3—N fluxes for rainfall (RF) and throughfall (TF) and used δ15N, δ18O and Δ17O to elucidate sources of NO−3. Finally, we characterized microbial communities and abundance of nitrifiers on foliage, RF and TF water through me- tabarcoding and quantitative polymerase chain reaction respectively. 3. NO3—NfluxesatthesitewerelargerinTFthanRF,suggestingacontributionfrom dry deposition, as also supported by δ15N and δ18O. However, Δ17O indicated that about 20% of NO−3 in TF derived from canopies nitrification in August, after a severe drought, with a lower proportion in September (≈8%). This seasonal par- titioning between biologically and atmospherically derived NO−3 coincided with a decreasing trend of the abundance of archaeal nitrifiers. Tree canopies and TF had more diverse microbial communities than RF. Yet, RF showed higher variability in microbial composition, likely associated with the origin of air masses. 4. Synthesis. Atmospheric N deposition is significantly altered after passing through tree canopies. While nitrification has been proposed as one of the mechanisms re- sponsible for these changes, very few studies directly investigate its occurrence. Here, we showed that nitrification by epiphytic leaf microbes contributed to in- creasing NO3 in TF and that nitrifiers’ activity was reduced going from the dry and hot summer to the cool winter. Overall, these results highlight the power of isotope approaches to examine ecosystem‐scale processes.File | Dimensione | Formato | |
---|---|---|---|
postprint guerrieri.pdf
Open Access dal 11/09/2020
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
1.78 MB
Formato
Adobe PDF
|
1.78 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.