This paper describes a new approach for identifying FIR models from a finite number of measurements, in the presence of additive and uncorrelated white noise. In particular, two different frequency domain algorithms are proposed. The first algorithm is based on some theoretical results concerning the dynamic Frisch scheme. The second algorithm maps the FIR identification problem into a quadratic eigenvalue problem. Both methods resemble in many aspects some other identification algorithms, originally developed in the time domain. The features of the proposed methods are compared with each other and with those of some time domain algorithms by means of Monte Carlo simulations.

Soverini, U., Söderström, T. (2020). Frequency domain identification of FIR models in the presence of additive input–output noise. AUTOMATICA, 115(5), 1-10 [10.1016/j.automatica.2020.108879].

Frequency domain identification of FIR models in the presence of additive input–output noise

Soverini, Umberto
Primo
;
2020

Abstract

This paper describes a new approach for identifying FIR models from a finite number of measurements, in the presence of additive and uncorrelated white noise. In particular, two different frequency domain algorithms are proposed. The first algorithm is based on some theoretical results concerning the dynamic Frisch scheme. The second algorithm maps the FIR identification problem into a quadratic eigenvalue problem. Both methods resemble in many aspects some other identification algorithms, originally developed in the time domain. The features of the proposed methods are compared with each other and with those of some time domain algorithms by means of Monte Carlo simulations.
2020
Soverini, U., Söderström, T. (2020). Frequency domain identification of FIR models in the presence of additive input–output noise. AUTOMATICA, 115(5), 1-10 [10.1016/j.automatica.2020.108879].
Soverini, Umberto; Söderström, Torsten
File in questo prodotto:
File Dimensione Formato  
FIR+N.pdf

Open Access dal 14/02/2022

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 987.44 kB
Formato Adobe PDF
987.44 kB Adobe PDF Visualizza/Apri
Automatica 2020.pdf

accesso riservato

Tipo: Versione (PDF) editoriale
Licenza: Licenza per accesso riservato
Dimensione 641.61 kB
Formato Adobe PDF
641.61 kB Adobe PDF   Visualizza/Apri   Contatta l'autore

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/789539
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 6
social impact