A group G has restricted centralizers if for each g in G the centralizer either is finite or has finite index in G. A theorem of Shalev states that a profinite group with restricted centralizers is abelian-by-finite. In the present paper we handle profinite groups with restricted centralizers of word-values. We show that if w is a multilinear commutator word and G a profinite group with restricted centralizers of w-values, then the verbal subgroup w(G) is abelian-by-finite.

Detomi E., Morigi M., Shumyatsky P. (2020). Profinite groups with restricted centralizers of commutators. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS, 150(5), 2301-2321 [10.1017/prm.2019.17].

Profinite groups with restricted centralizers of commutators

Morigi M.;
2020

Abstract

A group G has restricted centralizers if for each g in G the centralizer either is finite or has finite index in G. A theorem of Shalev states that a profinite group with restricted centralizers is abelian-by-finite. In the present paper we handle profinite groups with restricted centralizers of word-values. We show that if w is a multilinear commutator word and G a profinite group with restricted centralizers of w-values, then the verbal subgroup w(G) is abelian-by-finite.
2020
Detomi E., Morigi M., Shumyatsky P. (2020). Profinite groups with restricted centralizers of commutators. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH. SECTION A. MATHEMATICS, 150(5), 2301-2321 [10.1017/prm.2019.17].
Detomi E.; Morigi M.; Shumyatsky P.
File in questo prodotto:
File Dimensione Formato  
1901.04774.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione 369.25 kB
Formato Adobe PDF
369.25 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/789429
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 7
social impact