Let γn = [x1,... ,xn] be the nth lower central word. Denote by Xn the set of γn -values in a group G and suppose that there is a number m such that for each g a G. We prove that γn+1(G) has finite (m, n) -bounded order. This generalizes the much-celebrated theorem of B. H. Neumann that says that the commutator subgroup of a BFC-group is finite.
Detomi E., Donadze G., Morigi M., Shumyatsky P. (2021). ON FINITE-BY-NILPOTENT GROUPS. GLASGOW MATHEMATICAL JOURNAL, 63(1), 54-58 [10.1017/S0017089519000508].
ON FINITE-BY-NILPOTENT GROUPS
Morigi M.;
2021
Abstract
Let γn = [x1,... ,xn] be the nth lower central word. Denote by Xn the set of γn -values in a group G and suppose that there is a number m such that for each g a G. We prove that γn+1(G) has finite (m, n) -bounded order. This generalizes the much-celebrated theorem of B. H. Neumann that says that the commutator subgroup of a BFC-group is finite.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
1907.02798.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione - Non commerciale - Non opere derivate (CCBYNCND)
Dimensione
250.88 kB
Formato
Adobe PDF
|
250.88 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.