In this paper we illustrare a research based on NLP techniques aimed at automatically annotate modificatory provisions. We propose an approach which pairs deep syntactic parsing with rule-based shallow semantic analysis relying on a fine-grained taxonomy of modificatory provisions. The implemented system is evaluated on a large dataset hand-crafted by legal experts; the results are discussed and future directions of the research outlined.

A. Mazzei, D.P. Radicioni, R. Brighi (2009). NLP-based extraction of modificatory provisions semantics. NEW YORK, NY : ACM.

NLP-based extraction of modificatory provisions semantics

BRIGHI, RAFFAELLA
2009

Abstract

In this paper we illustrare a research based on NLP techniques aimed at automatically annotate modificatory provisions. We propose an approach which pairs deep syntactic parsing with rule-based shallow semantic analysis relying on a fine-grained taxonomy of modificatory provisions. The implemented system is evaluated on a large dataset hand-crafted by legal experts; the results are discussed and future directions of the research outlined.
2009
Proceedings of the 12th International Conference on Artificial Intelligence and Law
50
57
A. Mazzei, D.P. Radicioni, R. Brighi (2009). NLP-based extraction of modificatory provisions semantics. NEW YORK, NY : ACM.
A. Mazzei; D.P. Radicioni; R. Brighi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/78770
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? ND
social impact