BACKGROUND: A stimulus approaching the body requires fast processing and appropriate motor reactions. In monkeys, fronto-parietal networks are involved both in integrating multisensory information within a limited space surrounding the body (i.e. peripersonal space, PPS) and in action planning and execution, suggesting an overlap between sensory representations of space and motor representations of action. In the present study we investigate whether these overlapping representations also exist in the human brain. METHODOLOGY/PRINCIPAL FINDINGS: We recorded from hand muscles motor-evoked potentials (MEPs) induced by single-pulse of transcranial magnetic stimulation (TMS) after presenting an auditory stimulus either near the hand or in far space. MEPs recorded 50 ms after the near-sound onset were enhanced compared to MEPs evoked after far sounds. This near-far modulation faded at longer inter-stimulus intervals, and reversed completely for MEPs recorded 300 ms after the sound onset. At that time point, higher motor excitability was associated with far sounds. Such auditory modulation of hand motor representation was specific to a hand-centred, and not a body-centred reference frame. CONCLUSIONS/SIGNIFICANCE: This pattern of corticospinal modulation highlights the relation between space and time in the pps representation: an early facilitation for near stimuli may reflect immediate motor preparation, whereas, at later time intervals, motor preparation relates to distant stimuli potentially approaching the body.
Serino A, Annella L, Avenanti A (2009). Motor properties of peripersonal space in humans. PLOS ONE, 4(8), 1-8 [10.1371/journal.pone.0006582].
Motor properties of peripersonal space in humans
Serino A
;Annella L;Avenanti A
2009
Abstract
BACKGROUND: A stimulus approaching the body requires fast processing and appropriate motor reactions. In monkeys, fronto-parietal networks are involved both in integrating multisensory information within a limited space surrounding the body (i.e. peripersonal space, PPS) and in action planning and execution, suggesting an overlap between sensory representations of space and motor representations of action. In the present study we investigate whether these overlapping representations also exist in the human brain. METHODOLOGY/PRINCIPAL FINDINGS: We recorded from hand muscles motor-evoked potentials (MEPs) induced by single-pulse of transcranial magnetic stimulation (TMS) after presenting an auditory stimulus either near the hand or in far space. MEPs recorded 50 ms after the near-sound onset were enhanced compared to MEPs evoked after far sounds. This near-far modulation faded at longer inter-stimulus intervals, and reversed completely for MEPs recorded 300 ms after the sound onset. At that time point, higher motor excitability was associated with far sounds. Such auditory modulation of hand motor representation was specific to a hand-centred, and not a body-centred reference frame. CONCLUSIONS/SIGNIFICANCE: This pattern of corticospinal modulation highlights the relation between space and time in the pps representation: an early facilitation for near stimuli may reflect immediate motor preparation, whereas, at later time intervals, motor preparation relates to distant stimuli potentially approaching the body.File | Dimensione | Formato | |
---|---|---|---|
Serino & 09 PLoSOne - TMS motor auditory peripersonal space.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
262.57 kB
Formato
Adobe PDF
|
262.57 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.