Metal foams are widely studied as possible tools for the enhancement of heat transfer from hot bodies. The basic idea is that a metal foam tends to significantly increase the heat exchange area between the hot solid body and the external cooling fluid. For this reason, this class of porous materials is considered as a good candidate for an alternative to finned surfaces, with different pros and cons. Among the pros, we mention the generally wider area of contact per unit volume between solid and fluid. Among the cons is the difficulty to produce different specimens with the same inner structure, with the consequence that their performance may be significantly variable. This paper will offer a survey of the literature with a focus on the main heat transfer characteristics of the metal foams and the energy balance model based on Local Thermal Non-Equilibrium (LTNE). Then, a numerical simulation of the heat transfer at the pore-scale level for an artificial foam with a spatially periodic structure will be discussed. Finally, these numerical results will be employed to assess the macroscopic modeling of the flow and heat transfer in a metal foam. More precisely, the Darcy–Forchheimer model and the LTNE model adopted to describe the momentum and energy transfer in metal foams have been validated for metallic periodic structures.

Pulvirenti B., Celli M., Barletta A. (2020). Flow and convection in metal foams: A survey and new CFD results. FLUIDS, 5(3), 1-18 [10.3390/fluids5030155].

Flow and convection in metal foams: A survey and new CFD results

Pulvirenti B.
Membro del Collaboration Group
;
Celli M.
Membro del Collaboration Group
;
Barletta A.
Membro del Collaboration Group
2020

Abstract

Metal foams are widely studied as possible tools for the enhancement of heat transfer from hot bodies. The basic idea is that a metal foam tends to significantly increase the heat exchange area between the hot solid body and the external cooling fluid. For this reason, this class of porous materials is considered as a good candidate for an alternative to finned surfaces, with different pros and cons. Among the pros, we mention the generally wider area of contact per unit volume between solid and fluid. Among the cons is the difficulty to produce different specimens with the same inner structure, with the consequence that their performance may be significantly variable. This paper will offer a survey of the literature with a focus on the main heat transfer characteristics of the metal foams and the energy balance model based on Local Thermal Non-Equilibrium (LTNE). Then, a numerical simulation of the heat transfer at the pore-scale level for an artificial foam with a spatially periodic structure will be discussed. Finally, these numerical results will be employed to assess the macroscopic modeling of the flow and heat transfer in a metal foam. More precisely, the Darcy–Forchheimer model and the LTNE model adopted to describe the momentum and energy transfer in metal foams have been validated for metallic periodic structures.
2020
Pulvirenti B., Celli M., Barletta A. (2020). Flow and convection in metal foams: A survey and new CFD results. FLUIDS, 5(3), 1-18 [10.3390/fluids5030155].
Pulvirenti B.; Celli M.; Barletta A.
File in questo prodotto:
File Dimensione Formato  
fluids-05-00155-v2.pdf

accesso aperto

Descrizione: PDF versione dell'editore
Tipo: Versione (PDF) editoriale
Licenza: Creative commons
Dimensione 4.31 MB
Formato Adobe PDF
4.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/785219
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact