We explore the potential of Tensor-Train (TT) decompositions in the context of multi-feature face or object recognition strategies. We devise a new recognition algorithm that can handle three or more way tensors in the TT format, and propose a truncation strategy to limit memory usage. Numerical comparisons with other related methods—including the well established recognition algorithm based on high-order SVD—illustrate the features of the various strategies on benchmark datasets.

Brandoni D., Simoncini V. (2020). Tensor-Train decomposition for image recognition. CALCOLO, 57(1), 1-24 [10.1007/s10092-020-0358-8].

Tensor-Train decomposition for image recognition

Brandoni D.;Simoncini V.
2020

Abstract

We explore the potential of Tensor-Train (TT) decompositions in the context of multi-feature face or object recognition strategies. We devise a new recognition algorithm that can handle three or more way tensors in the TT format, and propose a truncation strategy to limit memory usage. Numerical comparisons with other related methods—including the well established recognition algorithm based on high-order SVD—illustrate the features of the various strategies on benchmark datasets.
2020
Brandoni D., Simoncini V. (2020). Tensor-Train decomposition for image recognition. CALCOLO, 57(1), 1-24 [10.1007/s10092-020-0358-8].
Brandoni D.; Simoncini V.
File in questo prodotto:
File Dimensione Formato  
TT_v3_revised_v2_bw.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 3.74 MB
Formato Adobe PDF
3.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/784044
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 3
social impact