We consider the numerical solution of large-scale symmetric differential matrix Riccati equations. Under certain hypotheses on the data, reduced order methods have recently arisen as a promising class of solution strategies by forming low-rank approximations to the sought after solution at selected timesteps. We show that great computational and memory savings are obtained by a reduction process onto rational Krylov subspaces as opposed to current approaches. By specifically addressing the solution of the reduced differential equation and reliable stopping criteria, we are able to obtain accurate final approximations at low memory and computational requirements. This is obtained by employing a two-phase strategy that separately enhances the accuracy of the algebraic approximation and the time integration. The new method allows us to numerically solve much larger problems than in the current literature. Numerical experiments on benchmark problems illustrate the effectiveness of the procedure with respect to existing solvers.

Kirsten G., Simoncini V. (2020). Order reduction methods for solving large-scale differential matrix riccati equations. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 42(4), A2182-A2205 [10.1137/19M1264217].

Order reduction methods for solving large-scale differential matrix riccati equations

Kirsten G.;Simoncini V.
2020

Abstract

We consider the numerical solution of large-scale symmetric differential matrix Riccati equations. Under certain hypotheses on the data, reduced order methods have recently arisen as a promising class of solution strategies by forming low-rank approximations to the sought after solution at selected timesteps. We show that great computational and memory savings are obtained by a reduction process onto rational Krylov subspaces as opposed to current approaches. By specifically addressing the solution of the reduced differential equation and reliable stopping criteria, we are able to obtain accurate final approximations at low memory and computational requirements. This is obtained by employing a two-phase strategy that separately enhances the accuracy of the algebraic approximation and the time integration. The new method allows us to numerically solve much larger problems than in the current literature. Numerical experiments on benchmark problems illustrate the effectiveness of the procedure with respect to existing solvers.
2020
Kirsten G., Simoncini V. (2020). Order reduction methods for solving large-scale differential matrix riccati equations. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 42(4), A2182-A2205 [10.1137/19M1264217].
Kirsten G.; Simoncini V.
File in questo prodotto:
File Dimensione Formato  
Dre_v10_rev5.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 972.52 kB
Formato Adobe PDF
972.52 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/784040
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact