The relationship between atmospheric blocking over Europe and the Atlantic eddy-driven jet stream is investigated in the NCEP/NCAR Reanalysis and in a climate model. This is carried out using a bidimensional blocking index based on geopotential height and a diagnostic providing daily latitudinal position and strength of the jet stream. It is shown that European Blocking (EB) is not decoupled from the jet stream but it is mainly associated with its poleward displacements. Moreover, the whole blocking area placed on the equatorward side of the jet stream, broadly ranging from Azores up to Scandinavia, emerges as associated with poleward jet displacements. The diagnostics are hence applied to two different climate model simulations in order to evaluate the biases in the jet stream and in the blocking representation. This analysis highlights large underestimation of EB, typical feature of general circulation models. Interestingly, observed blocking and jet biases over the Euro-Atlantic area are consistent with the blocking-jet relationship observed in the NCEP/NCAR Reanalysis. Finally, the importance of sea surface temperatures (SSTs) is investigated showing that realistic SSTs can reduce the bias in the jet stream variability but not in the frequency of EB. We conclude highlighting that blocking-related diagnostics can provide more information about the Euro-Atlantic variability than diagnostics simply based on the Atlantic jet stream.
Davini P, Cagnazzo C, Fogli PG, Manzini E, Gualdi S, Navarra A (2014). European blocking and Atlantic jet stream variability in the NCEP/NCAR reanalysis and the CMCC-CMS climate model. CLIMATE DYNAMICS, 43(1-2), 71-85 [10.1007/s00382-013-1873-y].
European blocking and Atlantic jet stream variability in the NCEP/NCAR reanalysis and the CMCC-CMS climate model
Navarra A
2014
Abstract
The relationship between atmospheric blocking over Europe and the Atlantic eddy-driven jet stream is investigated in the NCEP/NCAR Reanalysis and in a climate model. This is carried out using a bidimensional blocking index based on geopotential height and a diagnostic providing daily latitudinal position and strength of the jet stream. It is shown that European Blocking (EB) is not decoupled from the jet stream but it is mainly associated with its poleward displacements. Moreover, the whole blocking area placed on the equatorward side of the jet stream, broadly ranging from Azores up to Scandinavia, emerges as associated with poleward jet displacements. The diagnostics are hence applied to two different climate model simulations in order to evaluate the biases in the jet stream and in the blocking representation. This analysis highlights large underestimation of EB, typical feature of general circulation models. Interestingly, observed blocking and jet biases over the Euro-Atlantic area are consistent with the blocking-jet relationship observed in the NCEP/NCAR Reanalysis. Finally, the importance of sea surface temperatures (SSTs) is investigated showing that realistic SSTs can reduce the bias in the jet stream variability but not in the frequency of EB. We conclude highlighting that blocking-related diagnostics can provide more information about the Euro-Atlantic variability than diagnostics simply based on the Atlantic jet stream.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.