Gleason score, a measure of prostate tumor differentiation, is the strongest predictor of lethal prostate cancer at the time of diagnosis. Metabolomic profiling of tumor and of patient serum could identify biomarkers of aggressive disease and lead to the development of a less-invasive assay to perform active surveillance monitoring. Metabolomic profiling of prostate tissue and serum samples was performed. Metabolite levels and metabolite-set were compared pathways across Gleason scores. Machine learning algorithms were trained and tuned to predict transformation or differentiation status from metabolite data. 135 metabolites were significantly different (adjusted p<0.05) in tumor vs normal tissue, and pathway analysis identified one sugar metabolism pathway (adjusted p=0.03). Machine learning identified profiles that predicted tumor versus normal tissue (AUC of 0.82 ± 0.08). In tumor tissue, 25 metabolites were associated with Gleason score (unadjusted p<0.05), 4 increased in high grade while the remainder were enriched in low grade. While pyroglutamine and 1,5-anhydroglucitol were correlated (0.73 and 0.72, respectively) between tissue and serum from the same patient, no metabolites were consistently associated with Gleason score in serum. Previously reported as well as novel metabolites with differing abundance were identified across tumor tissue. However, a "metabolite signature" for Gleason score was not obtained. This may be due to study design and analytical challenges that future studies should consider. Implications: Metabolic profiling can distinguish benign and neoplastic tissues. A novel unsupervised machine learning method can be utilized to achieve this distinction.

Penney, K.L., Tyekucheva, S., Rosenthal, J., El Fandy, H., Carelli, R., Borgstein, S., et al. (2021). Metabolomics of Prostate Cancer Gleason Score in Tumor Tissue and Serum. MOLECULAR CANCER RESEARCH, 19(3), 475-484 [10.1158/1541-7786.MCR-20-0548].

Metabolomics of Prostate Cancer Gleason Score in Tumor Tissue and Serum

Fiorentino, Michelangelo;
2021

Abstract

Gleason score, a measure of prostate tumor differentiation, is the strongest predictor of lethal prostate cancer at the time of diagnosis. Metabolomic profiling of tumor and of patient serum could identify biomarkers of aggressive disease and lead to the development of a less-invasive assay to perform active surveillance monitoring. Metabolomic profiling of prostate tissue and serum samples was performed. Metabolite levels and metabolite-set were compared pathways across Gleason scores. Machine learning algorithms were trained and tuned to predict transformation or differentiation status from metabolite data. 135 metabolites were significantly different (adjusted p<0.05) in tumor vs normal tissue, and pathway analysis identified one sugar metabolism pathway (adjusted p=0.03). Machine learning identified profiles that predicted tumor versus normal tissue (AUC of 0.82 ± 0.08). In tumor tissue, 25 metabolites were associated with Gleason score (unadjusted p<0.05), 4 increased in high grade while the remainder were enriched in low grade. While pyroglutamine and 1,5-anhydroglucitol were correlated (0.73 and 0.72, respectively) between tissue and serum from the same patient, no metabolites were consistently associated with Gleason score in serum. Previously reported as well as novel metabolites with differing abundance were identified across tumor tissue. However, a "metabolite signature" for Gleason score was not obtained. This may be due to study design and analytical challenges that future studies should consider. Implications: Metabolic profiling can distinguish benign and neoplastic tissues. A novel unsupervised machine learning method can be utilized to achieve this distinction.
2021
Penney, K.L., Tyekucheva, S., Rosenthal, J., El Fandy, H., Carelli, R., Borgstein, S., et al. (2021). Metabolomics of Prostate Cancer Gleason Score in Tumor Tissue and Serum. MOLECULAR CANCER RESEARCH, 19(3), 475-484 [10.1158/1541-7786.MCR-20-0548].
Penney, Kathryn L; Tyekucheva, Svitlana; Rosenthal, Jacob; El Fandy, Habiba; Carelli, Ryan; Borgstein, Stephanie; Zadra, Giorgia; Fanelli, Giuseppe Ni...espandi
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/783723
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 21
social impact