We prove Gaussian upper and lower bounds for the fundamental solutions of a class of degenerate parabolic equations satisfying a weak Hörmander condition. The bound is independent of the smoothness of the coefficients and generalizes classical results for uniformly parabolic equations.
Lanconelli A., Pascucci A., Polidoro S. (2020). Gaussian lower bounds for non-homogeneous Kolmogorov equations with measurable coefficients. JOURNAL OF EVOLUTION EQUATIONS, 20(4), 1399-1417 [10.1007/s00028-020-00560-7].
Gaussian lower bounds for non-homogeneous Kolmogorov equations with measurable coefficients
Lanconelli A.;Pascucci A.
;Polidoro S.
2020
Abstract
We prove Gaussian upper and lower bounds for the fundamental solutions of a class of degenerate parabolic equations satisfying a weak Hörmander condition. The bound is independent of the smoothness of the coefficients and generalizes classical results for uniformly parabolic equations.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
LPP13-1.pdf
accesso aperto
Tipo:
Postprint
Licenza:
Licenza per accesso libero gratuito
Dimensione
517.07 kB
Formato
Adobe PDF
|
517.07 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.