We prove Gaussian upper and lower bounds for the fundamental solutions of a class of degenerate parabolic equations satisfying a weak Hörmander condition. The bound is independent of the smoothness of the coefficients and generalizes classical results for uniformly parabolic equations.

Lanconelli A., Pascucci A., Polidoro S. (2020). Gaussian lower bounds for non-homogeneous Kolmogorov equations with measurable coefficients. JOURNAL OF EVOLUTION EQUATIONS, 20(4), 1399-1417 [10.1007/s00028-020-00560-7].

Gaussian lower bounds for non-homogeneous Kolmogorov equations with measurable coefficients

Lanconelli A.;Pascucci A.
;
Polidoro S.
2020

Abstract

We prove Gaussian upper and lower bounds for the fundamental solutions of a class of degenerate parabolic equations satisfying a weak Hörmander condition. The bound is independent of the smoothness of the coefficients and generalizes classical results for uniformly parabolic equations.
2020
Lanconelli A., Pascucci A., Polidoro S. (2020). Gaussian lower bounds for non-homogeneous Kolmogorov equations with measurable coefficients. JOURNAL OF EVOLUTION EQUATIONS, 20(4), 1399-1417 [10.1007/s00028-020-00560-7].
Lanconelli A.; Pascucci A.; Polidoro S.
File in questo prodotto:
File Dimensione Formato  
LPP13-1.pdf

accesso aperto

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 517.07 kB
Formato Adobe PDF
517.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/783606
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 5
social impact