Astrochemistry and molecular astrophysics are often used as synonyms to define an interdisciplinary field that involves chemistry and astronomy, (astro)physics, as well as a “flavor” of biology and geology. Even if it is difficult to define an unique goal, it can be surely affirmed that the main aim is to understand the chemical evolution occurring in space: from diatomics to molecules of a certain degree of complexity and beyond. In other words, this research area studies how molecules are formed and destroyed in different astronomical environments as well as how they interact with radiation. To summarize (and, at the same time, simplify), the focus of astrochemistry is the investigation of chemical processes taking place in space, including molecular evolution and complexity. Molecules have been (and still are being) found everywhere in space: in the interstellar medium, in circumstellar shells, in pregalactic gas, in protostellar disks, and in the atmospheres of planets and stars. Molecules are thus ubiquitous and they can be considered unique probes of molecular excitation mechanisms, radiative transfer, and kinematics.
Puzzarini, C. (2020). Grand Challenges in Astrochemistry. FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 7, 1-4 [10.3389/fspas.2020.00019].
Grand Challenges in Astrochemistry
Puzzarini, C
2020
Abstract
Astrochemistry and molecular astrophysics are often used as synonyms to define an interdisciplinary field that involves chemistry and astronomy, (astro)physics, as well as a “flavor” of biology and geology. Even if it is difficult to define an unique goal, it can be surely affirmed that the main aim is to understand the chemical evolution occurring in space: from diatomics to molecules of a certain degree of complexity and beyond. In other words, this research area studies how molecules are formed and destroyed in different astronomical environments as well as how they interact with radiation. To summarize (and, at the same time, simplify), the focus of astrochemistry is the investigation of chemical processes taking place in space, including molecular evolution and complexity. Molecules have been (and still are being) found everywhere in space: in the interstellar medium, in circumstellar shells, in pregalactic gas, in protostellar disks, and in the atmospheres of planets and stars. Molecules are thus ubiquitous and they can be considered unique probes of molecular excitation mechanisms, radiative transfer, and kinematics.File | Dimensione | Formato | |
---|---|---|---|
fspas-07-00019.pdf
accesso aperto
Tipo:
Versione (PDF) editoriale
Licenza:
Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione
430.39 kB
Formato
Adobe PDF
|
430.39 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.