Eumelanin is the most common form of the pigment melanin in the human body, with diverse functions including photoprotection, antioxidant behavior, metal chelation, and free radical scavenging. Melanin also plays a role in melanoma skin cancer and Parkinson's disease. Sepia melanin is a natural eumelanin extracted from the ink sac of cuttlefish. Eumelanin is an ideal candidate to eco-design technologies based on abundant, biosourced, and biodegradable organic electronic materials to alleviate the environmental footprint of the electronics sector. Herein, the focus is on the reversible electrical resistive switching in dry and wet Sepia eumelanin pellets, pointing to the possibility of predominant electronic transport satisfying conditio sine qua non to develop melanin-based electronic devices. These findings shed light on the possibility to describe the transport physics of dry eumelanin using the amorphous semiconductor model. Results are of tremendous importance for the development of sustainable organic electronics.

Reali M., Gouda A., Bellemare J., Menard D., Nunzi J.-M., Soavi F., et al. (2020). Electronic Transport in the Biopigment Sepia Melanin. ACS APPLIED BIO MATERIALS, 3(8), 5244-5252 [10.1021/acsabm.0c00373].

Electronic Transport in the Biopigment Sepia Melanin

Soavi F.;
2020

Abstract

Eumelanin is the most common form of the pigment melanin in the human body, with diverse functions including photoprotection, antioxidant behavior, metal chelation, and free radical scavenging. Melanin also plays a role in melanoma skin cancer and Parkinson's disease. Sepia melanin is a natural eumelanin extracted from the ink sac of cuttlefish. Eumelanin is an ideal candidate to eco-design technologies based on abundant, biosourced, and biodegradable organic electronic materials to alleviate the environmental footprint of the electronics sector. Herein, the focus is on the reversible electrical resistive switching in dry and wet Sepia eumelanin pellets, pointing to the possibility of predominant electronic transport satisfying conditio sine qua non to develop melanin-based electronic devices. These findings shed light on the possibility to describe the transport physics of dry eumelanin using the amorphous semiconductor model. Results are of tremendous importance for the development of sustainable organic electronics.
2020
Reali M., Gouda A., Bellemare J., Menard D., Nunzi J.-M., Soavi F., et al. (2020). Electronic Transport in the Biopigment Sepia Melanin. ACS APPLIED BIO MATERIALS, 3(8), 5244-5252 [10.1021/acsabm.0c00373].
Reali M.; Gouda A.; Bellemare J.; Menard D.; Nunzi J.-M.; Soavi F.; Santato C.
File in questo prodotto:
File Dimensione Formato  
11585_782499 Post print.pdf

Open Access dal 06/07/2021

Tipo: Postprint
Licenza: Licenza per accesso libero gratuito
Dimensione 1.25 MB
Formato Adobe PDF
1.25 MB Adobe PDF Visualizza/Apri
mt0c00373_si_001.pdf

accesso aperto

Tipo: File Supplementare
Licenza: Licenza per accesso libero gratuito
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/782499
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 36
social impact