We study generalized heat kernel coefficients, which appear in the trace of the heat kernel with an insertion of a first-order differential operator, by using a path integral representation. These coefficients may be used to study gravitational anomalies, i.e. anomalies in the conservation of the stress tensor. We use the path integral method to compute the coefficients related to the gravitational anomalies of theories in a non-abelian gauge background and flat space of dimensions 2, 4, and 6. In 4 dimensions one does not expect to have genuine gravitational anomalies. However, they may be induced at intermediate stages by regularization schemes that fail to preserve the corresponding symmetry. A case of interest has recently appeared in the study of the trace anomalies of Weyl fermions.

Path integral calculation of heat kernel traces with first order operator insertions

Bastianelli F.
;
Comberiati F.
2020

Abstract

We study generalized heat kernel coefficients, which appear in the trace of the heat kernel with an insertion of a first-order differential operator, by using a path integral representation. These coefficients may be used to study gravitational anomalies, i.e. anomalies in the conservation of the stress tensor. We use the path integral method to compute the coefficients related to the gravitational anomalies of theories in a non-abelian gauge background and flat space of dimensions 2, 4, and 6. In 4 dimensions one does not expect to have genuine gravitational anomalies. However, they may be induced at intermediate stages by regularization schemes that fail to preserve the corresponding symmetry. A case of interest has recently appeared in the study of the trace anomalies of Weyl fermions.
Bastianelli F.; Comberiati F.
File in questo prodotto:
File Dimensione Formato  
72.pdf

accesso aperto

Tipo: Versione (PDF) editoriale
Licenza: Licenza per Accesso Aperto. Creative Commons Attribuzione (CCBY)
Dimensione 370.75 kB
Formato Adobe PDF
370.75 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/781837
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact