To improve the management and reliability of power distribution networks, there is a strong demand for models simulating energy loads in a realistic way. In this paper, we present a novel multi-scale model to generate realistic residential load profiles at different spatial-temporal resolutions. By taking advantage of information from Census and national surveys, we generate statistically consistent populations of heterogeneous families with their respective appliances. Exploiting a Bottom-up approach based on Monte Carlo Non Homogeneous Semi-Markov, we provide household end-user behaviours and realistic households load profiles on a daily as well as on a weekly basis, for either weekdays and weekends. The proposed approach overcomes limitations of state-of-art solutions that do not consider neither the time-dependency of the probability of performing specific activities in a house, nor their duration, or are limited in the type of probability distributions they can model. On top of that, it provides outcomes that are not limited on a per-day basis. The range of available space and time resolutions span from single household to district and from second to year, respectively, featuring multi-level aggregation of the simulation outcomes. To demonstrate the accuracy of our model, we present experimental results obtained simulating realistic populations in a period covering a whole calendar year and analyse our model’s outcome at different scales. Then, we compare such results with three different data-sets that provide real load consumption at household, national and European levels, respectively.

Lorenzo Bottaccioli, Santa Di Cataldo, Andrea Acquaviva, Edoardo Patti (2019). Realistic Multi-Scale Modelling of Household Electricity Behaviours. IEEE ACCESS, 7, 2467-2489 [10.1109/ACCESS.2018.2886201].

Realistic Multi-Scale Modelling of Household Electricity Behaviours

Andrea Acquaviva;
2019

Abstract

To improve the management and reliability of power distribution networks, there is a strong demand for models simulating energy loads in a realistic way. In this paper, we present a novel multi-scale model to generate realistic residential load profiles at different spatial-temporal resolutions. By taking advantage of information from Census and national surveys, we generate statistically consistent populations of heterogeneous families with their respective appliances. Exploiting a Bottom-up approach based on Monte Carlo Non Homogeneous Semi-Markov, we provide household end-user behaviours and realistic households load profiles on a daily as well as on a weekly basis, for either weekdays and weekends. The proposed approach overcomes limitations of state-of-art solutions that do not consider neither the time-dependency of the probability of performing specific activities in a house, nor their duration, or are limited in the type of probability distributions they can model. On top of that, it provides outcomes that are not limited on a per-day basis. The range of available space and time resolutions span from single household to district and from second to year, respectively, featuring multi-level aggregation of the simulation outcomes. To demonstrate the accuracy of our model, we present experimental results obtained simulating realistic populations in a period covering a whole calendar year and analyse our model’s outcome at different scales. Then, we compare such results with three different data-sets that provide real load consumption at household, national and European levels, respectively.
2019
Lorenzo Bottaccioli, Santa Di Cataldo, Andrea Acquaviva, Edoardo Patti (2019). Realistic Multi-Scale Modelling of Household Electricity Behaviours. IEEE ACCESS, 7, 2467-2489 [10.1109/ACCESS.2018.2886201].
Lorenzo Bottaccioli; Santa Di Cataldo; Andrea Acquaviva; Edoardo Patti
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/781539
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 28
social impact