Bissiri et al. (2016) present a general Bayesian approach where the like- lihood is replaced more generally by a loss function, which is used to derive the posterior distribution from the prior. In this paper, we exploit this idea for learning the structure of undirected graphical models over discrete variables.

Pier Giovanni Bissiri, M.C. (2020). Bayesian Inference of Undirected Graphical Models from Count Data. Pearson.

Bayesian Inference of Undirected Graphical Models from Count Data

Pier Giovanni Bissiri;Monica Chiogna;
2020

Abstract

Bissiri et al. (2016) present a general Bayesian approach where the like- lihood is replaced more generally by a loss function, which is used to derive the posterior distribution from the prior. In this paper, we exploit this idea for learning the structure of undirected graphical models over discrete variables.
2020
Book of short papers SIS 2020
638
643
Pier Giovanni Bissiri, M.C. (2020). Bayesian Inference of Undirected Graphical Models from Count Data. Pearson.
Pier Giovanni Bissiri, Monica Chiogna, Nguyen Thi Kim Hue
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11585/779975
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact