The application of a life-cycle perspective within the industrial sector may help companies in supporting all the planning activities aimed to promote new business opportunities. The usage of LCA is a common practice in corporates working in the field of chemistry. The development and production of fine/bulk chemicals, pharmaceuticals, plastics, personal care products, etc., may be supported by LCA and green metrics. The development of a lower impact and safer chemical industry is encouraged by the adoption of the Green Chemistry principles. Among these the usage of renewables sources of building blocks is one of the most investigated principle. However, the use of biomass as starting precursors needs to be assessed through LCA before considering a bio-based route greener than the traditional fossil pathway. Recently, the social sphere of sustainability has increased its importance also in the chemical industry, because many chemicals could have social repercussions as a consequence of their adoption. The implementation of S-LCA strategies may help enterprises to configure repercussions of their activities in this sense, by achieving SDGs described in the Agenda 2030. This chapter is intended to drive readers through such issues by stimulating their sensibility towards sustainability within the chemical industry.

LCA integration within sustainability metrics for chemical companies

Cespi D.;Passarini F.;Neri E.;Cavani F.
2020

Abstract

The application of a life-cycle perspective within the industrial sector may help companies in supporting all the planning activities aimed to promote new business opportunities. The usage of LCA is a common practice in corporates working in the field of chemistry. The development and production of fine/bulk chemicals, pharmaceuticals, plastics, personal care products, etc., may be supported by LCA and green metrics. The development of a lower impact and safer chemical industry is encouraged by the adoption of the Green Chemistry principles. Among these the usage of renewables sources of building blocks is one of the most investigated principle. However, the use of biomass as starting precursors needs to be assessed through LCA before considering a bio-based route greener than the traditional fossil pathway. Recently, the social sphere of sustainability has increased its importance also in the chemical industry, because many chemicals could have social repercussions as a consequence of their adoption. The implementation of S-LCA strategies may help enterprises to configure repercussions of their activities in this sense, by achieving SDGs described in the Agenda 2030. This chapter is intended to drive readers through such issues by stimulating their sensibility towards sustainability within the chemical industry.
Life Cycle Assessment in the Chemical Product Chain: Challenges, Methodological Approaches and Applications
53
73
Cespi D.; Passarini F.; Neri E.; Cucciniello R.; Cavani F.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/779901
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact