We prove the Pad?e (Stieltjes) summability of the perturbation series of any energy level En,1(?), n ? N, of the cubic anharmonic oscillator, H1(?) = p2 +x2 +i??x3, as suggested by the numerical studies of Bender and Weniger. At the same time, we give a simple proof of the positivity of every level of the PT -symmetric Hamiltonian H1(?) for positive ? (Bessis–Zinn Justin conjecture). The n zeros, of a state ?n,1(?), stable at ? = 0, are confined for ? on the cut complex plane, and are related to the level En,1(?) by the Bohr–Sommerfeld quantization rule (semiclassical phase-integral condition). We also prove the absence of non-perturbative eigenvalues and the simplicity of the spectrum of our Hamiltonians.

Pade summability of the cubic oscillator

GRECCHI, VINCENZO;MARTINEZ, ANDRE' GEORGES
2009

Abstract

We prove the Pad?e (Stieltjes) summability of the perturbation series of any energy level En,1(?), n ? N, of the cubic anharmonic oscillator, H1(?) = p2 +x2 +i??x3, as suggested by the numerical studies of Bender and Weniger. At the same time, we give a simple proof of the positivity of every level of the PT -symmetric Hamiltonian H1(?) for positive ? (Bessis–Zinn Justin conjecture). The n zeros, of a state ?n,1(?), stable at ? = 0, are confined for ? on the cut complex plane, and are related to the level En,1(?) by the Bohr–Sommerfeld quantization rule (semiclassical phase-integral condition). We also prove the absence of non-perturbative eigenvalues and the simplicity of the spectrum of our Hamiltonians.
File in questo prodotto:
Eventuali allegati, non sono esposti

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11585/77826
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact